I'm streaming the video from my raspberryPi using piCamera to a web socket, so that I can view it within my local network.
I want to make my own motion detection script from scratch, therefore I want to get the first image from the video stream (which is going to be the plain background) then compare with a function next frames to the first one to check whether something has changed (I have written those functions separately), I am not really worrying about efficiency here.
MAIN ISSUE: I want to get the data from those frames in a BytesIO object, then convert them to a 2D numpy array in B&W so I can perform operations. All this while keeping the stream going (I have in fact reduced the frame rate to 4 per second to make it run faster on my computer).
PROBLEM ENCOUNTERED WITH THE FOLLOWING CODE: One part of the problem that I have identified is that the numbers are way off. In my settings my camera to have a resolution of around 640*480 (= 307,200 length numpy array pixels data in B&W) whereas my computations in len() return less that 100k pixels.
def main():
print('Initializing camera')
base_image = io.BytesIO()
image_captured = io.BytesIO()
with picamera.PiCamera() as camera:
camera.resolution = (WIDTH, HEIGHT)
camera.framerate = FRAMERATE
camera.vflip = VFLIP # flips image rightside up, as needed
camera.hflip = HFLIP # flips image left-right, as needed
sleep(1) # camera warm-up time
print('Initializing websockets server on port %d' % WS_PORT)
WebSocketWSGIHandler.http_version = '1.1'
websocket_server = make_server(
'', WS_PORT,
server_class=WSGIServer,
handler_class=WebSocketWSGIRequestHandler,
app=WebSocketWSGIApplication(handler_cls=StreamingWebSocket))
websocket_server.initialize_websockets_manager()
websocket_thread = Thread(target=websocket_server.serve_forever)
print('Initializing HTTP server on port %d' % HTTP_PORT)
http_server = StreamingHttpServer()
http_thread = Thread(target=http_server.serve_forever)
print('Initializing broadcast thread')
output = BroadcastOutput(camera)
broadcast_thread = BroadcastThread(output.converter, websocket_server)
print('Starting recording')
camera.start_recording(output, 'yuv')
try:
print('Starting websockets thread')
websocket_thread.start()
print('Starting HTTP server thread')
http_thread.start()
print('Starting broadcast thread')
broadcast_thread.start()
time.sleep(0.5)
camera.capture(base_image, use_video_port=True, format='jpeg')
base_data = np.asarray(bytearray(base_image.read()), dtype=np.uint64)
base_img_matrix = cv2.imdecode(base_data, cv2.IMREAD_GRAYSCALE)
while True:
camera.wait_recording(1)
#insert here the code for frame analysis
camera.capture(image_captured, use_video_port=True, format='jpeg')
data_next = np.asarray(bytearray(image_captured.read()), dtype=np.uint64)
next_img_matrix = cv2.imdecode(data_next, cv2.IMREAD_GRAYSCALE)
monitor_changes(base_img_matrix, next_img_matrix)
except KeyboardInterrupt:
pass
finally:
print('Stopping recording')
camera.stop_recording()
print('Waiting for broadcast thread to finish')
broadcast_thread.join()
print('Shutting down HTTP server')
http_server.shutdown()
print('Shutting down websockets server')
websocket_server.shutdown()
print('Waiting for HTTP server thread to finish')
http_thread.join()
print('Waiting for websockets thread to finish')
websocket_thread.join()
if __name__ == '__main__':
main()