Suppose I have some tasks (Monte Carlo simulations) that I want to run in parallel. I want to complete a given number of tasks, but tasks take different amount of time so not easy to divide the work evenly over the threads. Also: I need the results of all simulations in a single vector (or array) in the end.
So I come up with below approach:
int Max{1000000};
//SimResult is some struct with well-defined default value.
std::vector<SimResult> vec(/*length*/Max);//Initialize with default values of SimResult
int LastAdded{0};
void fill(int RandSeed)
{
Simulator sim{RandSeed};
while(LastAdded < Max)
{
// Do some work to bring foo to the desired state
//The duration of this work is subject to randomness
vec[LastAdded++]
= sim.GetResult();//Produces SimResult.
}
}
main()
{
//launch a bunch of std::async that start
auto fut1 = std::async(fill,1);
auto fut2 = std::async(fill,2);
//maybe some more tasks.
fut1.get();
fut2.get();
//do something with the results in vec.
}
The above code will give race conditions I guess. I am looking for a performant approach to avoid that. Requirements: avoid race conditions (fill the entire array, no skips) ; final result is immediately in array ; performant.
Reading on various approaches, it seems atomic is a good candidate, but I am not sure what settings will be most performant in my case? And not even sure whether atomic will cut it; maybe a mutex guarding LastAdded is needed?