Suppose I have data points distributed over time like a decreasing exponential function but it includes zero mean Gaussian noise with variance of say 20. How would I determine the likelihood function and find MLE's for the parameters? So all I have is the following data: I have fit an exponential curve using python. My attempt:
def func(x):
return params[0]*(x**params[1])+params[2])
params, cov = curve_fit(f, time, X)
params[0] = A
params[1] = B
params[2] = C
LH_function = A*(x**B)
So I am not sure how to determine the likelihood function given just a dataset. Do I need to assume what distribution the data is in? (with 0 mean noise).