so I've been working on this facial identification project. It's for my science fair and I'm in the phase where I'm trying to get data graphs, plots, and visualizations. I've got it to work to some extent, but it's not consistent (in terms of execution).
The thing is, sometimes the code works, sometimes it'll give me an error.
For some context, the error is with Numpy append(). I have a variable I want to append data to but when it doesn't work the error is AttributeError: 'numpy.ndarray' object has no attribute 'append'
#Although the results aren't as expected, this can make for a good demo in ISEF
#The whole refresh after a face is detected is cool and can be used to show how different faces cluster
# Numerical computation requirements
import numpy as np
from numpy import linalg, load, expand_dims, asarray, savez_compressed, append
from numpy.linalg import norm
import pandas as pd
# Plotting requirements
import matplotlib
from matplotlib import pyplot as plt
import matplotlib.patheffects as PathEffects
from matplotlib.animation import FuncAnimation as ani
import seaborn as sb
# Clustering requirements
import sklearn
from sklearn.cluster import KMeans
from sklearn.manifold import TSNE
from sklearn.preprocessing import scale
# Miscellaneous requirements
import os
import cv2
from PIL import Image
from mtcnn.mtcnn import MTCNN
from keras.models import load_model
from scipy.spatial.distance import squareform, pdist
# Initialize RNG seed and required size for Facenet
seed = 12345678
size = (160,160)
# Required networks
facenet = load_model('facenet_keras.h5')
fd = MTCNN()
# Initialize Seaborn plots
sb.set_style('darkgrid')
sb.set_palette('muted')
sb.set_context('notebook', font_scale=1.5, rc={'lines.linewidth': 2.5})
# Matplotlib animation requirements?
plt.style.use('fivethirtyeight')
fig = plt.figure()
# Load embeddings
data = load('jerome only npz/jerome embeddings.npz')
Data_1 = data['arr_0']
Dataset = []
for array in Data_1:
Dataset.append(np.expand_dims(array, axis=0))
# Create cluster
cluster = KMeans(n_clusters=2, random_state=0).fit(Data_1)
y = cluster.labels_
z = pd.DataFrame(y.tolist())
faces = list()
def scatter(x,colors):
palette = np.array(sb.color_palette('hls', 26))
plot = plt.figure()
ax = plt.subplot(aspect='equal')
# sc = ax.scatter(x[:,0],x[:,1], lw =0, s=120, c=palette[colors.astype(np.int)])
sc = ax.scatter(x[:,0],x[:,1], lw =0, s=120)
labels = []
return plot , ax, sc, labels
def detembed():
cam = cv2.VideoCapture(0)
_,frame = cam.read()
info = fd.detect_faces(frame)
if info != []:
for i in info:
print("***************** FACE DETECTED *************************************************")
x,yc,w,h = i['box']
x,y = abs(x), abs(yc)
w,h = abs(w), abs(h)
xx, yy = x+w, yc+h
#cv2.rectangle(frame, (x,y), (xx,yy), (0,0,255),2)
face = frame[yc:yy, x:xx]
image = Image.fromarray(face)
image = image.resize(size)
arr = asarray(image)
arr = arr.astype('float32')
mean, std = arr.mean(), arr.std()
arr = (arr - mean) / std
samples = expand_dims(arr, axis=0)
faces.append(samples)
#cv2.imshow('Camera Feed', frame)
while True:
detembed()
embeddings = Dataset
if not faces:
continue
else:
for face in faces:
embeds = facenet.predict(face)
#switch these if conflicts arise
embeddings.append(embeds)
embeddings = asarray(embeddings)
embeddings = embeddings[:,0,:]
cluster = KMeans(n_clusters=2, random_state=0).fit(Data_1)
y = cluster.labels_
points = TSNE(random_state=seed).fit_transform(embeddings)
# here "y" dictates the color of the plots depending on the kmeans algorithm
scatter(points,y)
graph = ani(fig, scatter, interval=20)
fcount = len(embeddings)
plt.text(0,0,'{} points'.format(fcount))
plt.show()
# reset embeddings var to initial dataset
Dataset = np.delete(Dataset, fcount - 1,0)
embeddings = Dataset
if cv2.waitKey(1) & 0xFF == ord('q'):
break
cv2.release()
cv2.destroyAllWindows
Note that I am not a talented programmer; this code was botched from some example I found online. I had to pick up Python as I went along with this project. I do have a background in C, so I would say I get the basics of code logic.
Please help. I'm getting really desperate; the science fair is getting closer and I am a high schooler with no ML mentor. I live on an island (Guam) with no machine learning practitioners (not even in the university), so I turn to Stackoverflow.