In Eisbach I can use ;
to apply a method to all new subgoals created by a method.
However, I often know how many subgoals are created and would like to apply different methods to the new subgoals.
Is there a way to say something like "apply method X to the first new subgoal and method Y to the second new subgoal"?
Here is a simple use case:
I want to develop a method that works on 2 conjunctions of arbitrary length but with the same structure. The method should be usable to show that conjunction 1 implies conjunction 2 by showing that the implication holds for each component. It should be usable like this:
lemma example:
assumes c: "a 0 ∧ a 1 ∧ a 2 ∧ a 3"
and imp: "⋀i. a i ⟹ a' i"
shows "a' 0 ∧ a' 1 ∧ a' 2 ∧ a' 3"
proof (conj_one_by_one pre: c)
show "a 0 ⟹ a' 0" by (rule imp)
show "a 1 ⟹ a' 1" by (rule imp)
show "a 2 ⟹ a' 2" by (rule imp)
show "a 3 ⟹ a' 3" by (rule imp)
qed
When implementing this method in Eisbach, I have a problem after using rule conjI
.
I get two subgoals that I want to recursively work on, but I want to use different facts for the two cases.
I came up with the following workaround, which uses artificial markers for the two subgoals and is kind of ugly:
definition "marker_L x ≡ x"
definition "marker_R x ≡ x"
lemma conjI_marked:
assumes "marker_L P" and "marker_R Q"
shows "P ∧ Q"
using assms unfolding marker_L_def marker_R_def by simp
method conj_one_by_one uses pre = (
match pre in
p: "?P ∧ ?Q" ⇒ ‹
(unfold marker_L_def marker_R_def)?,
rule conjI_marked;(
(match conclusion in "marker_L _" ⇒ ‹(conj_one_by_one pre: p[THEN conjunct1])?›)
| (match conclusion in "marker_R _" ⇒ ‹(conj_one_by_one pre: p[THEN conjunct2])?›))›)
| ((unfold marker_L_def marker_R_def)?, insert pre)