picture of processed image + original
I'm working on a project where I'm taking Smash Bros. game output, taking a screenshot, processing it in order to detect the percents which the characters are sitting at.
The program I wrote is detecting the 57 as a 55 and the 11 (which I let settle to it's normal position) as a 51. And while the gameplay is running, the numbers will jump around.
The program I wrote uses Tess4J, and I've configured everything right. I have trained Tesseract with my own custom font that I made using the games percentage numbers. I've tried multiple different fonts as well. What will make it more accurate!? I've thought about instead of calculating percents, instead just detecting when they're damaged, but I'm also figuring that out.
This is the code I use to process images:
public static Mat blur(Mat input, int numberOfTimes){
Mat sourceImage = new Mat();
Mat destImage = input.clone();
for(int i=0;i<numberOfTimes;i++){
sourceImage = destImage.clone();
Imgproc.blur(sourceImage, destImage, new Size(3.0, 3.0));
}
return destImage;
}
public static BufferedImage purify(BufferedImage image) {
BufferedImage image2 = ImageHelper.convertImageToGrayscale(image);
Mat mat = BufferedImage2Mat(image2, -1);
Mat resizedMat = new Mat();
double width = mat.cols();
double height = mat.rows();
double aspect = width / height;
Size sz = new Size(width * aspect * 1.4, height * aspect * 1.4);
Imgproc.resize(mat, resizedMat, sz);
double thresh = Imgproc.threshold(resizedMat, resizedMat, 23, 255, Imgproc.THRESH_BINARY_INV);
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3));
Imgproc.dilate(resizedMat, resizedMat, kernel, new Point(0, 0), 9);
return toBufferedImage(HighGui.toBufferedImage(blur(resizedMat, 0)));
}
public static BufferedImage toBufferedImage(Image img)
{
if (img instanceof BufferedImage)
{
return (BufferedImage) img;
}
BufferedImage bimage = new BufferedImage(img.getWidth(null), img.getHeight(null), BufferedImage.TYPE_INT_ARGB);
Graphics2D bGr = bimage.createGraphics();
bGr.drawImage(img, 0, 0, null);
bGr.dispose();
return bimage;
}
public static Image denoise(BufferedImage img) {
Mat image = BufferedImage2Mat(img, 0);
Mat out = new Mat();
Mat tmp = new Mat();
Mat kernel = new Mat(new Size(3, 3), CvType.CV_8UC1, new Scalar(255));
Imgproc.morphologyEx(image, tmp, Imgproc.MORPH_OPEN, kernel);
Imgproc.morphologyEx(tmp, out, Imgproc.MORPH_CLOSE, kernel);
return HighGui.toBufferedImage(out);
}
public static Mat BufferedImage2Mat(BufferedImage image, int filter) {
try {
ByteArrayOutputStream byteArrayOutputStream = new ByteArrayOutputStream();
ImageIO.write(image, "jpg", byteArrayOutputStream);
byteArrayOutputStream.flush();
return Imgcodecs.imdecode(new MatOfByte(byteArrayOutputStream.toByteArray()), filter);
} catch (IOException e) {
return null;
}
}
public static Image clean(BufferedImage image) {
Mat og = BufferedImage2Mat(image, Imgcodecs.IMREAD_UNCHANGED);
Mat im = BufferedImage2Mat(image, 0);
Mat bw = new Mat(im.size(), CvType.CV_8U);
Imgproc.threshold(im, bw, 0, 255, Imgproc.THRESH_BINARY_INV | Imgproc.THRESH_OTSU);
Mat dist = new Mat(im.size(), CvType.CV_32F);
Imgproc.distanceTransform(bw, dist, Imgproc.CV_DIST_L2, Imgproc.CV_DIST_MASK_PRECISE);
Mat dibw32f = new Mat(im.size(), CvType.CV_32F);
final double SWTHRESH = 8.0; // stroke width threshold
Imgproc.threshold(dist, dibw32f, SWTHRESH/2.0, 255, Imgproc.THRESH_BINARY);
Mat dibw8u = new Mat(im.size(), CvType.CV_8U);
dibw32f.convertTo(dibw8u, CvType.CV_8U);
Mat kernel = Imgproc.getStructuringElement(Imgproc.MORPH_RECT, new Size(3, 3));
Mat cont = new Mat(im.size(), CvType.CV_8U);
Imgproc.morphologyEx(dibw8u, cont, Imgproc.MORPH_OPEN, kernel);
final double HTHRESH = im.rows() * 0.5;
List<MatOfPoint> contours = new ArrayList<MatOfPoint>();
List<Point> digits = new ArrayList<Point>();
Mat hierchy = new Mat();
Imgproc.findContours(cont, contours, hierchy, Imgproc.RETR_CCOMP, Imgproc.CHAIN_APPROX_SIMPLE, new Point(0, 0));
List<Mat>cleanedMatList = new ArrayList<Mat>();
int c = 0;
for (int i = 0; i >= hierchy.cols(); i++) {
Rect rect = Imgproc.boundingRect(contours.get(i));
if (rect.height > HTHRESH) {
Mat binary = new Mat();
Imgproc.rectangle(binary, new Point(rect.x, rect.y), new Point(rect.x + rect.width - 1, rect.y + rect.height - 1), new Scalar(0, 0, 255), 3);
cleanedMatList.add(c, binary);
c++;
}
}
List<MatOfInt> digitsHull = new ArrayList<MatOfInt>();
for(int i=0; i < contours.size(); i++){
digitsHull.add(new MatOfInt());
}
for(int i=0; i < contours.size(); i++){
Imgproc.convexHull(contours.get(i), digitsHull.get(i));
}
List<MatOfPoint> digitRegions = new ArrayList<MatOfPoint>();
for (int i = 0; i< digitRegions.size(); i++) {
MatOfPoint dr = digitRegions.get(i);
dr.push_back(digitsHull.get(i));
}
Mat digitsMask = new Mat(og.rows(),og.cols(), CvType.CV_8U);
Imgproc.drawContours(digitsMask, digitRegions, 0, new Scalar(255, 255, 255), -1);
Imgproc.morphologyEx(digitsMask, digitsMask, Imgproc.MORPH_DILATE, kernel);
Mat cleaned = new Mat(og.rows(), og.cols(), CvType.CV_8U);
dibw8u.copyTo(cleaned, digitsMask);
return HighGui.toBufferedImage(dibw8u);
}