It depends how ' real-time ' you need it
if you need it very crisp, go down right at the bottom level and use audio units. that means setting up an INPUT callback. remember, when this fires you need to allocate your own buffers and then request the audio from the microphone.
ie don't get fooled by the presence of a buffer pointer in the parameters... it is only there because Apple are using the same function declaration for the input and render callbacks.
here is a paste out of one of my projects:
OSStatus dataArrivedFromMic(
void * inRefCon,
AudioUnitRenderActionFlags * ioActionFlags,
const AudioTimeStamp * inTimeStamp,
UInt32 inBusNumber,
UInt32 inNumberFrames,
AudioBufferList * dummy_notused )
{
OSStatus status;
RemoteIOAudioUnit* unitClass = (RemoteIOAudioUnit *)inRefCon;
AudioComponentInstance myUnit = unitClass.myAudioUnit;
AudioBufferList ioData;
{
int kNumChannels = 1; // one channel...
enum {
kMono = 1,
kStereo = 2
};
ioData.mNumberBuffers = kNumChannels;
for (int i = 0; i < kNumChannels; i++)
{
int bytesNeeded = inNumberFrames * sizeof( Float32 );
ioData.mBuffers[i].mNumberChannels = kMono;
ioData.mBuffers[i].mDataByteSize = bytesNeeded;
ioData.mBuffers[i].mData = malloc( bytesNeeded );
}
}
// actually GET the data that arrived
status = AudioUnitRender( (void *)myUnit,
ioActionFlags,
inTimeStamp,
inBusNumber,
inNumberFrames,
& ioData );
// take MONO from mic
const int channel = 0;
Float32 * outBuffer = (Float32 *) ioData.mBuffers[channel].mData;
// get a handle to our game object
static KPRing* kpRing = nil;
if ( ! kpRing )
{
//AppDelegate * appDelegate = [UIApplication sharedApplication].delegate;
kpRing = [Game singleton].kpRing;
assert( kpRing );
}
// ... and send it the data we just got from the mic
[ kpRing floatsArrivedFromMic: outBuffer
count: inNumberFrames ];
return status;
}