ERROR MESSAGE I am trying to upload images of reasonable size(around 20KB). But according to documentation image of size 1KB to 6MB can be uploaded. I hope there is some part of the program that needs modification to rectify the error.
File "add_person_faces.py", line 46, in <module>
res = face_client.person_group_person.add_face_from_stream(global_var.personGroupId, person_id, img_data)
File "C:\Python\Python36\lib\site-packages\azure\cognitiveservices\vision\face\operations\_person_group_person_operations.py", line 785, in add_face_from_stream
raise models.APIErrorException(self._deserialize, response)
azure.cognitiveservices.vision.face.models._models_py3.APIErrorException: (InvalidImageSize) Image size is too small.
CODE
import os, time
import global_variables as global_var
from azure.cognitiveservices.vision.face import FaceClient
from msrest.authentication import CognitiveServicesCredentials
from azure.cognitiveservices.vision.face.models import TrainingStatusType, Person, SnapshotObjectType, OperationStatusType
import urllib
import sqlite3
import requests
from requests.packages.urllib3.exceptions import InsecureRequestWarning
requests.packages.urllib3.disable_warnings(InsecureRequestWarning)
KEY = global_var.key
ENDPOINT = 'https://centralindia.api.cognitive.microsoft.com'
face_client = FaceClient(ENDPOINT,CognitiveServicesCredentials(KEY))
def get_person_id():
person_id = ''
extractId = str(sys.argv[1])[-2:]
connect = sqlite3.connect("Face-DataBase")
c = connect.cursor()
cmd = "SELECT * FROM Students WHERE ID = " + extractId
c.execute(cmd)
row = c.fetchone()
person_id = row[3]
connect.close()
return person_id
if len(sys.argv) is not 1:
currentDir = os.path.dirname(os.path.abspath(__file__))
imageFolder = os.path.join(currentDir, "dataset/" + str(sys.argv[1]))
person_id = get_person_id()
for filename in os.listdir(imageFolder):
if filename.endswith(".jpg"):
print(filename)
img_data = open(os.path.join(imageFolder,filename), "rb")
res = face_client.face.detect_with_stream(img_data)
if not res:
print('No face detected from image {}'.format(filename))
continue
res = face_client.person_group_person.add_face_from_stream(global_var.personGroupId, person_id, img_data)
print(res)
time.sleep(6)
else:
print("supply attributes please from dataset folder")