I have trained a yolov3 model in Keras, and it has 3 outputs (3D tensors). No problem there. Then I converted this model into tfjs to run it in a browser. I can easily get the content of each one of the outputs if I truncate the model to this specific output. But I cannot get the full (3 outputs) at once. I am wondering if that is even possible?
Here's what I'd like to do (it does not work, it hangs):
const myTracker = await tf.loadLayersModel(v3_model);
const prediction = tf.tidy(() => {
// prepare inputs tensor
const inputs = tf.browser.fromPixels(canvas, 3).expandDims(0).toFloat().div(tf.scalar(255));
console.log("============ inputs tensor shape:" + inputs.shape); //--> 1,416,416,3
// get all 3 outputs
const outputs = myTracker.predict(inputs).arraySync();
outputs.print();
return outputs;
});
And here's what works if I am only interested in 1 output, after identifying the 3 outputs names.
const myTracker = await tf.loadLayersModel(v3_model);
const prediction = tf.tidy(() => {
// prepare inputs tensor
const inputs = tf.browser.fromPixels(canvas, 3).expandDims(0).toFloat().div(tf.scalar(255));
console.log("============ inputs tensor shape:" + inputs.shape); //--> 1,416,416,3
// get the full object of interesting layers
const layer3 = myTracker.getLayer('conv2d_3');
const layer8 = myTracker.getLayer('conv2d_8');
const layer13= myTracker.getLayer('conv2d_13');
// get 1 specific output from a new model build from the original
const myTracker_truncated = tf.model({inputs: myTracker.inputs, outputs: layer3.output});
const outputs = myTracker_truncated.predict(inputs).arraySync();
return outputs;
});
If I inpect (console.log(myTracker)) I get this structure for my outputs:
outputNames: (3) […]
0: "conv2d_3
1: "conv2d_8"
2: "conv2d_13"
length: 3
outputs: (3) […]
0: Object { dtype: "float32", id: 662, originalName: "conv2d_3/conv2d_3", … }
1: Object { dtype: "float32", id: 665, originalName: "conv2d_8/conv2d_8", … }
2: Object { dtype: "float32", id: 668, originalName: "conv2d_13/conv2d_13", … }
length: 3
Would anybody know if what I am trying to achieve is feasible (short of concatenating the 3 outputs into 1 in the original keras model) ?