I'm running tensorflow 2.1 and tensorflow_probability 0.9. I have fit a Structural Time Series Model with a seasonal component. I am using code from the Tensorflow Probability Structural Time Series Probability example: Tensorflow Github.
In the example there is a great plot where the decomposition is visualised:
# Get the distributions over component outputs from the posterior marginals on
# training data, and from the forecast model.
component_dists = sts.decompose_by_component(
demand_model,
observed_time_series=demand_training_data,
parameter_samples=q_samples_demand_)
forecast_component_dists = sts.decompose_forecast_by_component(
demand_model,
forecast_dist=demand_forecast_dist,
parameter_samples=q_samples_demand_)
demand_component_means_, demand_component_stddevs_ = (
{k.name: c.mean() for k, c in component_dists.items()},
{k.name: c.stddev() for k, c in component_dists.items()})
(
demand_forecast_component_means_,
demand_forecast_component_stddevs_
) = (
{k.name: c.mean() for k, c in forecast_component_dists.items()},
{k.name: c.stddev() for k, c in forecast_component_dists.items()}
)
When using a trend component, is it possible to decompose and visualise both:
trend/_level_scale & trend/_slope_scale
I have tried many permutations to extract the nested element of the trend component with no luck.
Thanks for your time in advance.