I'm trying to control multithreaded access to a vector of data which is fixed in size, so threads will wait until their current position in it has been filled before trying to use it, or will fill it themselves if no-one else has yet. (But ensure no-one is waiting around if their position is already filled, or no-one has done it yet)
However, I am struggling to understand a good way to do this, especially involving std::atomic. I'm just not very familiar with C++ multithreading concepts aside from basic std::thread
usage.
Here is a very rough example of the problem:
class myClass
{
struct Data
{
int res1;
};
std::vector<Data*> myData;
int foo(unsigned long position)
{
if (!myData[position])
{
bar(myData[position]);
}
// Do something with the data
return 5 * myData[position]->res1;
}
void bar(Data* &data)
{
data = new Data;
// Do a whole bunch of calculations and so-on here
data->res1 = 42;
}
};
Now imagine if foo()
is being called multi-threaded, and multiple threads may (or may not) have the same position
at once. If that happens, there's a chance that a thread may (between when the Data
was created and when bar()
is finished, try to actually use the data.
So, what are the options?
1: Make a std::mutex for every position in myData. What if there are 10,000 elements in myData? That's 10,000 std::mutexes, not great.
2: Put a lock_guard
around it like this:
std::mutex myMutex;
{
const std::lock_guard<std::mutex> lock(myMutex);
if (!myData[position])
{
bar(myData[position]);
}
}
While this works, it also means if different threads are working in different positions, they wait needlessly, wasting all of the threading advantage.
3: Use a vector of chars and a spinlock as a poor man's mutex? Here's what that might look like:
static std::vector<char> positionInProgress;
static std::vector<char> positionComplete;
class myClass
{
struct Data
{
int res1;
};
std::vector<Data*> myData;
int foo(unsigned long position)
{
if (positionInProgress[position])
{
while (positionInProgress[position])
{
; // do nothing, just wait until it is done
}
}
else
{
if (!positionComplete[position])
{
// Fill the data and prevent anyone from using it until it is complete
positionInProgress[position] = true;
bar(myData[position]);
positionInProgress[position] = false;
positionComplete[position] = true;
}
}
// Do something with the data
return 5 * myData[position]->res1;
}
void bar(Data* data)
{
data = new Data;
// Do a whole bunch of calculations and so-on here
data->res1 = 42;
}
};
This seems to work, but none of the test or set operations are atomic, so I have a feeling I'm just getting lucky.
4: What about std::atomic
and std::atomic_flag
? Well, there are a few problems.
std::atomic_flag
doesn't have a way totest
without setting in C++11...which makes this kind of difficult.std::atomic
is not movable or copy-constructable, so I cannot make a vector of them (I do not know the number of positions during construction of myClass)
Conclusion:
This is the simplest example that (likely) compiles I can think of that demonstrates my real problem. In reality, myData is a 2-dimensional vector implemented using a special hand-rolled solution, Data itself is a vector of pointers to more complex data types, the data isn't simply returned, etc. This is the best I could come up with.