I am trying to export a matrix from Mathematica into Maple. I have tried using the following calling sequence in Maple to no avail
with(MmaTranslator):
MmaToMaple();
After which I simply select the notebook that I need and am able to translate it to Maple language. This worked phenomenally when I first tried to transfer one matrix, yet for the inverse of said matrix I was unable to do so. Is there anyway I can translate the inverse matrix. Below I shall write the code of what I have attempted in Mathematica
x1 = {{1, 0, 0, 0}, {0, (1/(
4 (x^2 +
z^2)))(4 z^2 Sqrt[(-1 + K (x^2 + y^2 + z^2))/(-1 +
K r^2)] + (Sqrt[2]
x^4 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]) +
Sqrt[2] x^2 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] +
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)])), (x y (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[2] Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]), (1/(
4 (x^2 + z^2)))
x z (-4 Sqrt[(-1 + K (x^2 + y^2 + z^2))/(-1 + K r^2)] +
Sqrt[(-4 +
2 K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] +
Sqrt[(-4 +
2 K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] + (Sqrt[2]
x^2 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[
x^4 + 4 x^2 y^2 + 4 y^2 z^2]))}, {0, (x y (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[2] Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]), (1/(
2 Sqrt[2]))(Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] +
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] + (x^2 (-Sqrt[((-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2))] +
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[
x^4 + 4 x^2 y^2 +
4 y^2 z^2])), (y z (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[2] Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2])}, {0, (
1/(4 (x^2 + z^2)))
x z (-4 Sqrt[(-1 + K (x^2 + y^2 + z^2))/(-1 + K r^2)] +
Sqrt[(-4 +
2 K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] +
Sqrt[(-4 +
2 K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] + (Sqrt[2]
x^2 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[
x^4 + 4 x^2 y^2 + 4 y^2 z^2])), (y z (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[2] Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]), (1/(
4 (x^2 +
z^2)))(4 x^2 Sqrt[(-1 + K (x^2 + y^2 + z^2))/(-1 +
K r^2)] + (Sqrt[2]
x^2 z^2 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] -
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))/(Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]) +
Sqrt[2] z^2 (Sqrt[(-2 +
K (x^2 + 2 y^2 - Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)] +
Sqrt[(-2 +
K (x^2 + 2 y^2 + Sqrt[x^4 + 4 x^2 y^2 + 4 y^2 z^2]))/(-1 +
K r^2)]))}}
y2 = Inverse[x1]
Which I neglect to add as it is incredibly long. I want to be able to export this y2 into Maple. Any help would be greatly appreciated.