I made an easy KI learning with tensorflow 2 with this code and everything works fine.
# Install TensorFlow
import tensorflow as tf
print(tf.__version__)
# Import matplotlib library
import matplotlib.pyplot as plt
#Import numpy
import numpy as np
#Dataset
mnist = tf.keras.datasets.mnist
(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
model = tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(128, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
model.fit(x_train, y_train, epochs=5)
print("Evaluation");
model.evaluate(x_test, y_test)
plt.imshow(x_train[6], cmap="gray") # Import the image
plt.show() # Plot the image
predictions = model.predict([x_train]) # Make prediction
print("Vorhersage: ", np.argmax(predictions[6])) # Print out the number
print("Correct is: ", y_train[6])
My problem is how to add the detecting layers like Conv2d and MaxPooling2D. Where do I have to add this layers and does this influence my plotting and my predictions?