This is apparently the code for seq2seq model with embedding that i wrote
encoder_inputs = Input(shape=(MAX_LEN, ), dtype='int32',)
encoder_embedding = embed_layer(encoder_inputs)
encoder_LSTM = LSTM(HIDDEN_DIM, return_state=True)
encoder_outputs, state_h, state_c = encoder_LSTM(encoder_embedding)
encoder_states = [state_h, state_c]
decoder_inputs = Input(shape=(MAX_LEN, ))
decoder_embedding = embed_layer(decoder_inputs)
decoder_LSTM = LSTM(HIDDEN_DIM, return_state=True, return_sequences=True)
decoder_outputs, _, _ = decoder_LSTM(
decoder_embedding, initial_state=encoder_states)
outputs = TimeDistributed(
Dense(VOCAB_SIZE, activation='softmax'))(decoder_outputs)
model = Model([encoder_inputs, decoder_inputs], outputs)
# defining inference model
encoder_model = Model(encoder_inputs, encoder_states)
decoder_state_input_h = Input(shape=(None,))
decoder_state_input_c = Input(shape=(None,))
decoder_states_inputs = [decoder_state_input_h, decoder_state_input_c]
decoder_outputs, state_h, state_c = decoder_LSTM(
decoder_embedding, initial_state=decoder_states_inputs)
decoder_states = [state_h, state_c]
outputs = TimeDistributed(
Dense(VOCAB_SIZE, activation='softmax'))(decoder_outputs)
decoder_model = Model(
[decoder_inputs] + decoder_states_inputs, [outputs] + decoder_states)
return model, encoder_model, decoder_model
we are using inference mode for predictions particularly encoder and decoder model, but i am not sure where the training is happening for the encoder and decoder?
Edit 1
Code is build upon: https://keras.io/examples/lstm_seq2seq/,
with added embedding layer and Time Distributed dense layer.
for more info on issue: github repo