It's been days that I've been struggling just to simply view layers' gradients in the debug mode of Keras2. Needless to say, I have already tried codes such as:
import Keras.backend as K
gradients = K.gradients(model.output, model.input)
sess = tf.compat.v1.keras.backend.get_session()
evaluated_gradients = sess.run(gradients, feed_dict={model.input:images})
or
evaluated_gradients = sess.run(gradients, feed_dict{model.input.experimantal_ref():images})
or
with tf.compat.v1.Session(graph=tf.compat.v1.keras.backend.get_default_graph())
or similar approaches using
tf.compat.v1
which all lead to the following error:
RuntimeError: The Session graph is empty. Add operations to the graph before calling run().
I assume this should be the most basic tool any deep learning package could provide, it is strange why there seems no easy way to do so in Keras2. Any ideas?