I wonder if it is a problem to use BatchNormalization when there are only 2 convolutional layers in a CNN. Can this have adverse effects on classification performance? Now I don't mean the training time, but really the accuracy? Is my network overloaded with unneccessary layers? I want to train the network with a small data set.
model = Sequential()
model.add(Conv2D(32, kernel_size=(3,3), input_shape=(28,28,1), padding = 'same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Conv2D(64, kernel_size=(3,3), padding='same'))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(MaxPooling2D(pool_size=(2,2)))
model.add(Dropout(0.2))
model.add(Flatten())
model.add(Dense(128))
model.add(BatchNormalization())
model.add(Activation('relu'))
model.add(Dropout(0.5))
model.add(Dense(10, activation='softmax'))
model.compilke(optimizer="Adam", loss='categorical_crossentropy, metrics =['accuracy'])
Many thanks.