I'm a bit new to OpenCL/C99, but can't understand why the the two kernels below give different results. X has been initialized to zeros, but requires "re-zeroing" at each outer loop step else incorrect results are obtained (see plot). Notice that I have not invoked any parallelism here; to the best of my knowledge, this is entirely serial:
content of kernels.cl
:
#pragma OPENCL EXTENSION cl_khr_fp64: enable
#define __CL_ENABLE_EXCEPTIONS
__kernel void nested_sum_succeeds(
int L,
__global __read_only double* X,
__global double* Y
)
{
for (int k=0; k<=L; k++) {
Y[k] = 0;
for (int j=0; j<=k; j++) {
Y[k] += X[j];
}
}
}
__kernel void nested_sum_fails(
int L,
__global __read_only double* X,
__global double* Y
)
{
for (int k=0; k<=L; k++) {
// Y[k] = 0;
for (int j=0; j<=k; j++) {
Y[k] += X[j];
}
}
}
content of script.py
:
import numpy as np
import pyopencl as cl
import pyopencl.array as cl_array
import matplotlib.pyplot as plt
with open("./kernels.cl") as fp:
prog_str = fp.read()
ctx = cl.create_some_context()
queue = cl.CommandQueue(ctx)
prog = cl.Program(ctx, prog_str).build()
L = 1000
X = np.linspace(0, 10, L)
X_dev = cl_array.to_device(queue, X)
Y_succeeds_dev = cl_array.to_device(queue, np.zeros(shape=X.shape, dtype=np.float64))
Y_fails_dev = cl_array.to_device(queue, np.zeros(shape=X.shape, dtype=np.float64))
nested_sum_succeeds = prog.nested_sum_succeeds
nested_sum_succeeds.set_scalar_arg_dtypes([
np.int64,
None,
None,
])
nested_sum_succeeds(
queue,
(len(X),),
None,
L,
X_dev.data,
Y_succeeds_dev.data,
)
nested_sum_fails = prog.nested_sum_fails
nested_sum_fails.set_scalar_arg_dtypes([
np.int64,
None,
None,
])
nested_sum_fails(
queue,
(len(X),),
None,
L,
X_dev.data,
Y_fails_dev.data,
)
np.allclose(Y_succeeds_dev.get(), Y_fails_dev.get()) #False
plt.ion()
plt.plot(Y_succeeds_dev.get())
plt.plot(Y_fails_dev.get())
Results: