OK, so you need to redefine your question somewhat. Without two continuous variables correlations cannot be used to "describe" a relationship as I guess you are asking. You can, however, see if there are statistically significant differences in pass rates between different positions. As for the questions on the statistics, I agree with Maurtis...CV is best place. As for the code to do the tests, try this:
Firstly you need to make sure you have the right packages installed. You will definitely need ggplot and ggfortify, and maybe others if you have to manipulate data, or other things. And load the libraries:
library(ggplot2)
library(ggfortify)
Next, make sure that your data is tidy: ie, variables in columns.
Then import your data into R:
#find file
data.location = file.choose()
#Import data
curr.data <- read.csv(data.location)
#Check data import
glimpse(curr.data)
Then plot using ggplot:
ggplot(curr.data, aes(x = POSITION, y = AVG_PASSES_COMPLETED)) +
geom_boxplot() +
theme_bw()
Then model using the linear model function (lm()
) to see if there is a significant difference in pass rates with regards to position.
passrate_model <- lm(AVG_PASSES_COMPLETED ~ POSITION, data = curr.data)
Before you test your hypothesis, you need to check the appropriateness of the model
autoplot(passrate_model, smooth.colour = NA)
If the residual plots look fine, then we are ready to test. If not then you will have to use another type of model (and I'm not going into that here now....).
The appropriate test for this (I think) would be a Tukey test, which requires an ANOVA. This will give a summary, and should show you if there is variance due to position:
passrate_av <- aov(passrate_model)
summary(passrate_av)
This will perform the Tukey test and give pair-wise comparisons including difference in means, 95% confidence intervals, and adjusted p-values:
tukey.test <- TukeyHSD(passrate_av)
tukey.test
And it can even do a nice plot for you too:
plot(tukey.test)