0

i currently write a Solver for the Basic Instant-Insanity. My program tells me alltime "NO" as it cant find a solution for my problem and i am to confused to find a fail. Can anyone provide me some help? Even a simple tip can be enough. Thanks alot!

ps: i am using GNU Prolog 1.4.5

pps : solutionnormal(l) should print me l with the cube list in it.

   /*
         |   |
         | 3 |
     -----------------
     | 5 | 1 | 6 | 2 |
     -----------------
         |   |
         | 4 |
   numeration of grid faces, for our problem is 1,2,5,6 interesting   
*/
%basecubes
cube(1,[r,w,w,b,r,g]).
cube(2,[r,b,w,g,b,w]).
cube(3,[r,g,b,b,g,w]).
cube(4,[r,r,r,b,w,g]).  

%possible rotations
rotate(S, [X1,X2,X3,X4,X5,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X2,X5,X4,X6,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X2,X6,X4,X1,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X2,X1,X4,X3,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).    
rotate(S, [X6,X1,X4,X5,X3,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X1,X3,X5,X2,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X1,X2,X5,X6,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X1,X6,X5,X4,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X6,X5,X3,X4,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X6,X4,X3,X1,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X6,X1,X3,X2,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X6,X2,X3,X5,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X4,X3,X2,X1,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X4,X1,X2,X6,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X4,X6,X2,X5,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X4,X5,X2,X3,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X5,X2,X1,X3,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X5,X3,X1,X4,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X5,X4,X1,X6,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X5,X6,X1,X2,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X3,X1,X6,X4,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X3,X4,X6,X5,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X3,X5,X6,X2,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X3,X2,X6,X1,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).

%my list
l([cube1,cube2,cube3,cube4]).
%solutionnormal().
solutionnormal([cube1,cube2,cube3,cube4]) :- 
   getfaces([cube1,cube2,cube3,cube4],1,L1), frontdiff(L1),
   getfaces([cube1,cube2,cube3,cube4],2,L2), backdiff(L2),
   getfaces([cube1,cube2,cube3,cube4],5,L5), leftdiff(L5),
   getfaces([cube1,cube2,cube3,cube4],6,L6), rightdiff(L6),
   cube1(1, cube1),
   rotate(2, cube2),
   rotate(3, cube3),
   rotate(4, cube4).
%get a list of faces on this side
getfaces([C1,C2,C3,C4], X, List) :-
   List = [fd_nth(C1, X),fd_nth(C2,X),fd_nth(C3,X),fd_nth(C4,X)].

%all diff for list
frontdiff(L1) :- fd_all_different(L1).

backdiff(L2) :- fd_all_different(L2).

leftdiff(L5) :- fd_all_different(L5).

rightdiff(L6) :- fd_all_different(L6).
false
  • 10,264
  • 13
  • 101
  • 209
Gernhard
  • 13
  • 5
  • 1
    If you made it easier for us to help you by giving the rules for Instant-Insanity it would help. e.g. [Instant insanity](https://en.wikipedia.org/wiki/Instant_Insanity) – Guy Coder Jan 11 '20 at 16:17
  • ah yes Sorry. The Basic task is, to place 4 Cubes as Stack; every Cube has different Colors. Task now is: Place the Cubes as Stack and every site has no Color doubled. So its basically an All_Different Constraint on each Side of the resulting tower – Gernhard Jan 11 '20 at 16:32
  • Why don't you start off with a simpler puzzle, e.g. instead of cubes, just 3 colors in a row, and instead of 4 high, just 3 high. Then start again with another simpler puzzle that just uses 2 cubes so you can learn how to do the rotation rules. – Guy Coder Jan 11 '20 at 17:27
  • 1
    Also do test cases. – Guy Coder Jan 11 '20 at 17:28
  • first fail is: the standard fd_all_different works only with Lists of Integers, but it still does not work after fixing this. – Gernhard Jan 11 '20 at 19:25

1 Answers1

1

Unfortunately I can't use gprolog at the moment (it's a long story)... but it seems to me that you have to rotate the cubes before and then check the faces.

I mean... something as

rotate(1, C1), % rotation of cube1 (needed? you can use directly cube1 instead?)
rotate(2, C2), % rotation of cube2
rotate(3, C3), % rotation of cube3
rotate(4, C4), % rotation of cube4
getfaces([C1, C2, C3, C4], 1, L1), frontdiff(L1),
getfaces([C1, C2, C3, C4], 2, L2), backdiff(L2),
getfaces([C1, C2, C3, C4], 5, L5), leftdiff(L5),
getfaces([C1, C2, C3, C4], 6, L6), rightdiff(L6).

Off topic: I don't see the need of frontdiff/1, backdiff/1, leftdiff/1, rightdiff/1 as aliases of fd_all_different/1

It seems to me that is a lot clearer to use fd_all_diff/1 directly

rotate(1, C1),
rotate(2, C2),
rotate(3, C3),
rotate(4, C4),
getfaces([C1, C2, C3, C4], 1, L1), fd_all_different(L1),
getfaces([C1, C2, C3, C4], 2, L2), fd_all_different(L2),
getfaces([C1, C2, C3, C4], 5, L5), fd_all_different(L5),
getfaces([C1, C2, C3, C4], 6, L6), fd_all_different(L6).

-- EDIT --

I add a full compiling, with the following command

swipl --goal=main --stand_alone=true -o test -c test.pl

SWI-prolog example for a Linux platform.

The test.pl file contains

%:- initialization(main).
:- use_module(library(clpfd)).

%basecubes
cube(1, [1,2,2,3,1,4]).
cube(2, [1,3,2,4,3,2]).
cube(3, [1,4,3,3,4,2]).
cube(4, [1,1,1,3,2,4]).  

%possible rotations
rotate(S, [X1,X2,X3,X4,X5,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X2,X5,X4,X6,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X2,X6,X4,X1,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X2,X1,X4,X3,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).    
rotate(S, [X6,X1,X4,X5,X3,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X1,X3,X5,X2,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X1,X2,X5,X6,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X1,X6,X5,X4,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X6,X5,X3,X4,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X6,X4,X3,X1,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X6,X1,X3,X2,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X6,X2,X3,X5,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X4,X3,X2,X1,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X4,X1,X2,X6,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X4,X6,X2,X5,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X4,X5,X2,X3,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X6,X5,X2,X1,X3,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X5,X3,X1,X4,X6]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X3,X5,X4,X1,X6,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X5,X6,X1,X2,X3]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X2,X3,X1,X6,X4,X5]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X1,X3,X4,X6,X5,X2]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X4,X3,X5,X6,X2,X1]) :- cube(S, [X1,X2,X3,X4,X5,X6]).
rotate(S, [X5,X3,X2,X6,X1,X4]) :- cube(S, [X1,X2,X3,X4,X5,X6]).

%get a list of faces on this side
getfaces([C1, C2, C3, C4], X, [Y1, Y2, Y3, Y4]) :-
  nth1(X, C1, Y1), nth1(X, C2, Y2), nth1(X, C3, Y3), nth1(X, C4, Y4).

main :-
  rotate(1, C1), rotate(2, C2), rotate(3, C3), rotate(4, C4),
  getfaces([C1, C2, C3, C4], 1, L1), all_distinct(L1),
  getfaces([C1, C2, C3, C4], 2, L2), all_distinct(L2),
  getfaces([C1, C2, C3, C4], 5, L5), all_distinct(L5),
  getfaces([C1, C2, C3, C4], 6, L6), all_distinct(L6),
  writeln(L1), writeln(L2), writeln(L5), writeln(L6),
  writeln("ok"),
  halt(0).

main :-
  halt(1).

and the output, executing ./test, is

[4,3,2,1]
[2,3,4,1]
[2,1,3,4]
[1,2,4,3]
ok
max66
  • 65,235
  • 10
  • 71
  • 111