A simple code takes around 130 seconds to write s3-minio, while write to local disk takes 1 second only. anything wrong?
I have followed this post but doesn't help https://docs.min.io/docs/disaggregated-spark-and-hadoop-hive-with-minio.html
Run with 3 executors will be faster -- 52 seconds, but still not fast enough
master('local[32]') can achieve 21 seconds
master('local[1]') --> 130 seconds
Environment:
single node kubernete cluster is running on local machine(16 cores/32G), A s3-minio POD(with local disk as storage), spark driver POD and some spark executor POD.
iotop shows the net traffic between minio and spark is about 100Kb~ 1Mb. cpu is also low.
number of goroutine in minio is about 150~450(max)
see below logs, I found there are a lot API call to retrieve s3 object status. is it the reason?
2020-01-05 03:00:42,674 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - object_delete_requests += 1 -> 24456
2020-01-05 03:00:42,676 DEBUG org.apache.spark.sql.execution.datasources.SQLHadoopMapReduceCommitProtocol - Committing files staged for absolute locations Map()
2020-01-05 03:00:42,676 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - op_get_file_status += 1 -> 61698
2020-01-05 03:00:42,676 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - Getting path status for s3a://dataplatform/tmp/test_pp_60m/.spark-staging-466619ae-8b30-4be3-9c92-49e079bd449c (tmp/test_pp_60m/.spark-staging-466619ae-8b30-4be3-9c92-49e079bd449c)
2020-01-05 03:00:42,676 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - object_metadata_requests += 1 -> 141711
2020-01-05 03:00:42,677 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - object_metadata_requests += 1 -> 141712
2020-01-05 03:00:42,677 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - object_list_requests += 1 -> 55793
2020-01-05 03:00:42,678 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - Not Found: s3a://dataplatform/tmp/test_pp_60m/.spark-staging-466619ae-8b30-4be3-9c92-49e079bd449c
2020-01-05 03:00:42,678 DEBUG org.apache.hadoop.fs.s3a.S3AFileSystem - Couldn't delete s3a://dataplatform/tmp/test_pp_60m/.spark-staging-466619ae-8b30-4be3-9c92-49e079bd449c - does not exist
2020-01-05 03:00:42,678 INFO org.apache.spark.sql.execution.datasources.FileFormatWriter - Write Job 1a68dddd-fd88-49cd-957d-36e050d31de3 committed.
2020-01-05 03:00:42,679 INFO org.apache.spark.sql.execution.datasources.FileFormatWriter - Finished processing stats for write job 1a68dddd-fd88-49cd-957d-36e050d31de3.
2020-01-05 03:08:59,183 DEBUG org.apache.spark.broadcast.TorrentBroadcast - Unpersisting TorrentBroadcast 1
2020-01-05 03:08:59,184 DEBUG org.apache.spark.storage.BlockManagerSlaveEndpoint - removing broadcast 1
from pyspark.sql import Row
import random, time
from pyspark.sql import SparkSession
spark = SparkSession.builder \
.enableHiveSupport() \
.config("spark.hadoop.mapreduce.fileoutputcommitter.algorithm.version", 2)\
.master("local[1]") \
.getOrCreate()
fixed_date = ['2019-01-01','2019-01-02','2019-01-03','2019-01-04']
refs = ['0','1','2']
data = bytearray(random.getrandbits(8) for _ in range(100))
start=int(time.time())
print("start=%s"%start)
rows = []
for ref_id in refs:
for d in fixed_date:
for camera_id in range(1):
for c in range(1000):
rows.append(Row(ref_id=ref_id,
camera_id="c_"+str(camera_id),
date=d,
data=data
))
df = spark._sc.parallelize(rows).toDF()
print("partition number=%s, row size=%s"% (df.rdd.getNumPartitions(),len(rows)))
df.write.mode("overwrite")\
.partitionBy('ref_id','date','camera_id')\
.parquet('s3a://mybucket/tmp/test_data')
Result Update
I think hadoop s3 part is slow(whatever I use fast upload or normal s3 transfer manager), especially when I write too many files into S3, it costs around 80-100 API call per file.Probably some S3 cache(amazon EMR or alluxio will help?)