I am trying to calculate the Sharpe ratio with a set of stock symbols. The code works with the first 5 stock symbols, however, it stops working after 6 symbols.
I searched the document for dimension errors that could possibly be the ValueError message but I do not see any possibilities. I also searched Quandl and Google for the error I was getting but could not get a specific result.
If someone could please let me know what I am doing wrong that would be great. I am very new to coding.
# import needed modules
import quandl
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
# get adjusted closing prices of 5 selected companies with Quandl
quandl.ApiConfig.api_key = 'oskr4yzppjZwxgJ7zNra'
selected = ['TGT', 'AAPL', 'MSFT', 'FCN', 'TSLA', 'SPY', 'XLV', 'BRK.B', 'WMT', 'JPM']
data = quandl.get_table('WIKI/PRICES', ticker = selected,
qopts = { 'columns': ['date', 'ticker', 'adj_close'] },
date = { 'gte': '2009-1-1', 'lte': '2019-12-31'}, paginate=True)
# reorganize data pulled by setting date as index width
# columns of tickers and their corresponding adjusted prices
clean = data.set_index('date')
table = clean.pivot(columns='ticker')
# calculate daily and annual returns of the stocks
returns_daily = table.pct_change()
returns_annual = returns_daily.mean() * 250
# get daily and covariance of returns of the stock
cov_daily = returns_daily.cov()
cov_annual = cov_daily * 250
# empty lists to store returns, volatility and weights of imiginary portfolios
port_returns = []
port_volatility = []
sharpe_ratio = []
stock_weights = []
# set the number of combinations for imaginary portfolios
num_assets = len(selected)
num_portfolios = 50000
# set random seed for reproduction's sake
np.random.seed(101)
# populate the empty lists with each portfolios returns,risk and weights
for single_portfolio in range(num_portfolios):
weights = np.random.random(num_assets)
weights /= np.sum(weights)
returns = np.dot(weights, returns_annual)
volatility = np.sqrt(np.dot(weights.T, np.dot(cov_annual, weights)))
sharpe = returns / volatility
sharpe_ratio.append(sharpe)
port_returns.append(returns)
port_volatility.append(volatility)
stock_weights.append(weights)
# a dictionary for Returns and Risk values of each portfolio
portfolio = {'Returns': port_returns,
'Volatility': port_volatility,
'Sharpe Ratio': sharpe_ratio}
# extend original dictionary to accomodate each ticker and weight in the portfolio
for counter,symbol in enumerate(selected):
portfolio[symbol+' weight'] = [weight[counter] for weight in stock_weights]
# make a nice dataframe of the extended dictionary
df = pd.DataFrame(portfolio)
# get better labels for desired arrangement of columns
column_order = ['Returns', 'Volatility', 'Sharpe Ratio'] + [stock+' weight' for stock in selected]
# reorder dataframe columns
df = df[column_order]
# find min Volatility & max sharpe values in the dataframe (df)
min_volatility = df['Volatility'].min()
max_sharpe = df['Sharpe Ratio'].max()
# use the min, max values to locate and create the two special portfolios
sharpe_portfolio = df.loc[df['Sharpe Ratio'] == max_sharpe]
min_variance_port = df.loc[df['Volatility'] == min_volatility]
# plot the efficient frontier with a scatter plot
plt.style.use('seaborn-dark')
df.plot.scatter(x='Volatility', y='Returns', c='Sharpe Ratio',
cmap='RdYlGn', edgecolors='black', figsize=(10, 8), grid=True)
plt.scatter(x=sharpe_portfolio['Volatility'], y=sharpe_portfolio['Returns'], c='red', marker='D', s=200)
plt.scatter(x=min_variance_port['Volatility'], y=min_variance_port['Returns'], c='blue', marker='D', s=200)
plt.xlabel('Volatility (Std. Deviation)')
plt.ylabel('Expected Returns')
plt.title('Efficient Frontier')
plt.show()
# print the details of the 2 special portfolios
print(min_variance_port.T)
print(sharpe_portfolio.T)
The error I am getting is this:
ValueError Traceback (most recent call last)
<ipython-input-8-3e66668bf017> in <module>
42 weights = np.random.random(num_assets)
43 weights /= np.sum(weights)
---> 44 returns = np.dot(weights, returns_annual)
45 volatility = np.sqrt(np.dot(weights.T, np.dot(cov_annual, weights)))
46 sharpe = returns / volatility
ValueError: shapes (10,) and (7,) not aligned: 10 (dim 0) != 7 (dim 0)