I want to compute 1_299_709 ** 1_300_751 % 104_729
in Crystal.
In Python, the pow
function allows to pass the modulo as third argument:
❯ python
>>> pow(1_299_709, 1_300_751, 104_729)
90827
In Ruby, the same:
❯ irb
irb(main):001:0> 1_299_709.pow(1_300_751, 104_729)
=> 90827
But in Crystal, there seems not to be such a functionality, and naturally, using **
operators quickly overflows:
❯ crystal eval "1_299_709 ** 1_300_751 % 104_729"
Unhandled exception: Arithmetic overflow (OverflowError)
from /usr/lib/crystal/int.cr:0:9 in '**'
from /eval:1:1 in '__crystal_main'
from /usr/lib/crystal/crystal/main.cr:97:5 in 'main_user_code'
from /usr/lib/crystal/crystal/main.cr:86:7 in 'main'
from /usr/lib/crystal/crystal/main.cr:106:3 in 'main'
from __libc_start_main
from _start
from ???
How to compute a modular exponentiation in Crystal?
Edit: To clarify, I'm already using BigInt
but that doesn't work. I removed BigInt from my minimal working example for simplicity.
The following Python code contains the actual numbers from my program:
>>> pow(53583115773616729421957814870755484980404298242901134400501331255090818409243, 28948022309329048855892746252171976963317496166410141009864396001977208667916, 115792089237316195423570985008687907853269984665640564039457584007908834671663)
75711134420273723792089656449854389054866833762486990555172221523628676983696
It executes easily and returns the correct result. Same for Ruby:
irb(main):001:0> 53583115773616729421957814870755484980404298242901134400501331255090818409243.pow(2894802230932904885589274625217197696331749616641014100986
4396001977208667916, 115792089237316195423570985008687907853269984665640564039457584007908834671663)
=> 75711134420273723792089656449854389054866833762486990555172221523628676983696
However, Crystal:
a = BigInt.new 53583115773616729421957814870755484980404298242901134400501331255090818409243
e = BigInt.new 28948022309329048855892746252171976963317496166410141009864396001977208667916
p = BigInt.new 115792089237316195423570985008687907853269984665640564039457584007908834671663
y = a ** e % p # overflows with and without BigInt
Is resulting in:
gmp: overflow in mpz type
Program received and didn't handle signal IOT (6)
How to compute such a massive modular exponentiation in Crystal?
Edit: Filed an issue to make sure it's not a bug: crystal-lang/crystal#8612