I have a dataset with 5K (and 60 features) records focused on binary classification.
Please note that this solution doesn't work here
I am trying to generate feature importance using Permutation Feature Importance
. However, I get the below error. Can you please look at my code and let me know whether I am making any mistake?
import eli5
from eli5.sklearn import PermutationImportance
logreg =LogisticRegression()
model = logreg.fit(X_train_std, y_train)
perm = PermutationImportance(model, random_state=1)
eli5.show_weights(perm, feature_names = X.columns.tolist())
I get an error like as shown below
AttributeError: 'PermutationImportance' object has no attribute 'feature_importances_'
Can you help me resolve this error?