I'm trying to transpile code from Python to R in order to do supervised dimensionality reduction with Random Forests and UMAP following instructions from this blog post.
I need to get an array that contains the leaf indices that each sample was assigned to in the forest so I can feed this information into the {uwot} package (for UMAP).
I would like to get this information from the following R packages: {randomForest}, {ranger}, and {extraTrees}. ranger
is expected to require the lowest compute-time (critical for my project) and ExtraTrees
, in some-cases, can outperform RF implementations (in terms of AUC
).
In Python, scikit-learn
the ExtraTreesClassifier
returns a numpy array which contains the leaf indices that each sample was assigned to in the forest like so:
To make thing as comparable as-possible between R/Python
we will do the brunt of the work using Python in reticulate
following the blog (but decreasing the size of simulated data) comparing only the various RF implementations.
Python Implementation
library(reticulate)
repl_python()
Now in the Python interpreter
import numpy as np
import pandas as pd
import scipy as sp
import matplotlib.pyplot as plt
from sklearn.ensemble import RandomForestClassifier, ExtraTreesClassifier
from sklearn.preprocessing import OneHotEncoder, StandardScaler
from sklearn.model_selection import cross_val_predict, StratifiedKFold
from sklearn.metrics import roc_auc_score
from sklearn.datasets import make_classification
from tqdm import tqdm
from umap import UMAP ## if this doesn't work try: import umap.umap_ as UMAP
from pynndescent import NNDescent
from fastcluster import single
from scipy.cluster.hierarchy import cut_tree, fcluster, dendrogram
from scipy.spatial.distance import squareform
from sklearn.tree import DecisionTreeClassifier, ExtraTreeClassifier
from sklearn.model_selection import train_test_split
# turning off automatic plot showing, and setting style
plt.style.use('bmh')
# let us generate some data with 10 clusters per class
X, y = make_classification(n_samples=10000, n_features=500, n_informative=5,
n_redundant=0, n_clusters_per_class=10, weights=[0.80],
flip_y=0.05, class_sep=3.5, random_state=42)
# normalizing to eliminate scaling differences
X = pd.DataFrame(StandardScaler().fit_transform(X))
# Split dataset into training set and test set
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=42) # 70% training and 30% test
Use ExtraTreesClassifier
to get the information from leaf indices and plot.
In the blog post the author used StratifiedKFold
& cross_val_predict
. Here I use train_test_split
instead to create a train/test split. This way I can use the same train/split for Python & R and ensure the Area under the ROC curve measurement is comparable.
# model instance
et = ExtraTreesClassifier(n_estimators=100, min_samples_leaf=500,
max_features=0.80, bootstrap=True, class_weight='balanced', n_jobs=-1, random_state=42)
# Train ExtraTreesClassifer
et.fit(X_train, y_train)
# Print the AUC
print('Area under the ROC Curve:', roc_auc_score(y_test, et.predict_proba(X_test)[:,1]))
The models performance is 0.8504 AUC. Now we move on to embedding.
# let us train our model with the full data
et.fit(X, y)
# and get the leaves that each sample was assigned to
leaves = et.apply(X)
What are dimensions of the numpy
array
leaves.shape
(10000, 100)
# calculating the embedding with hamming distance
sup_embed_et = UMAP(metric='hamming').fit_transform(leaves)
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_et[y == 0,0], sup_embed_et[y == 0,1], s=1, c='C0', cmap='viridis', label='$y=0$')
plt.scatter(sup_embed_et[y == 1,0], sup_embed_et[y == 1,1], s=1, c='C1', cmap='viridis', label='$y=1$')
plt.title('Supervised embedding with ExtraTrees')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.legend(fontsize=16, markerscale=5);
plt.show()
# taking a sample of the dataframe
embed_sample = pd.DataFrame(sup_embed_et).sample(5000, random_state=42)
# running fastcluster hierarchical clustering on the improved embedding
H = single(embed_sample)
# getting the clusters
clusters = cut_tree(H, height=0.35)
print('Number of clusters:', len(np.unique(clusters)))
This shows 19 clusters (the simulated number was 20).
# creating a dataframe for the clustering sample
clust_sample_df = pd.DataFrame({'cluster': clusters.reshape(-1), 'cl_sample':range(len(clusters))})
# creating an index with the sample used for clustering
index = NNDescent(embed_sample, n_neighbors=10)
# querying for all the data
nn = index.query(sup_embed_et, k=1)
# creating a dataframe with nearest neighbors for all samples
to_cluster_df = pd.DataFrame({'sample':range(sup_embed_et.shape[0]), 'cl_sample': nn[0].reshape(-1)})
# merging to assign cluster to all other samples, and tidying it
final_cluster_df = to_cluster_df.merge(clust_sample_df, on='cl_sample')
final_cluster_df = final_cluster_df.set_index('sample').sort_index()
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_et[:,0], sup_embed_et[:,1], s=1, c=final_cluster_df['cluster'], cmap='plasma')
plt.title('Hierarchical clustering and extraTrees')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.show()
exit
R Implementation(s)
Now in R
create a data.frame
using the same data we simulated with Python and split into train/test with sklearn
's train_test_split
:
library(dplyr)
df <- data.frame(py$X)
df$labels <- as.factor(py$y) # convert to factor for classification
d_train <- data.frame(py$X_train)
d_test <- data.frame(py$X_test)
d_train$labels <- py$y_train
d_test$labels <- py$y_test
# Identity the response column
ycol <- "labels"
# Identify the predictor columns
xcols <- setdiff(names(d_train), ycol)
# Convert response to factor (required by randomForest)
d_train[,ycol] <- as.factor(d_train[,ycol])
d_test[,ycol] <- as.factor(d_test[,ycol])
randomForest
First, the randomForest
package (one of the oldest, most well-known, but not most-optimal, packages):
library(randomForest)
library(cvAUC)
# Train a default RF model with 100 trees
## set
set.seed(123) # For reproducibility
system.time(
model <- randomForest(
x = d_train[,xcols],
y = d_train[,ycol],
xtest = d_test[,xcols],
ntree = 100,
nodes = TRUE # set to keep information on which trees in forest assigned to
)
) ## user: 30.835 system: 0.008 elapsed: 30.837
# Generate predictions on test dataset
preds <- model$test$votes[, 2]
labels <- d_test[,ycol]
# Compute AUC on the test set
cvAUC::AUC(predictions = preds, labels = labels)
The model performance is 0.8919 AUC. This is slightly better than what we saw in Python (albeit a bit slower)
Now as we did in python, we need to train and apply it on the whole dataset, keeping track of which leaves in the forest each sample was assigned to.
set.seed(123) # For reproducibility
md_full <- randomForest(formula = labels ~ ., data = df, ntree = 100, keep.forest = TRUE)
phat_full <- predict(md_full, newdata = df, type = "prob", nodes = TRUE)
# get the leaf indices that each sample was assigned to in the forest
leaves <- attr(phat_full, "nodes")
dim(leaves)
Takes this back into Python and plot with repl_python()
:
# Assign R object as Python object
leafs = r.leaves
# Get embeddings from UMAP
sup_embed_rf = UMAP(metric='hamming').fit_transform(leafs)
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_rf[y == 0,0], sup_embed_rf[y == 0,1], s=1, c='C0', cmap='viridis', label='$y=0$')
plt.scatter(sup_embed_rf[y == 1,0], sup_embed_rf[y == 1,1], s=1, c='C1', cmap='viridis', label='$y=1$')
plt.title('Supervised embedding with randomForest')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.legend(fontsize=16, markerscale=5);
plt.show()
exit
# taking a sample of the dataframe
embed_sample = pd.DataFrame(sup_embed_rf).sample(5000, random_state=42)
# running fastcluster hierarchical clustering on the improved embedding
H = single(embed_sample)
# getting the clusters
clusters = cut_tree(H, height=0.35)
print('Number of clusters:', len(np.unique(clusters)))
This shows 12 clusters (although the simulated number was 20). I'm confused that I found fewer clusters considering that the AUC was higher for this method?
# creating a dataframe for the clustering sample
clust_sample_df = pd.DataFrame({'cluster': clusters.reshape(-1), 'cl_sample':range(len(clusters))})
# creating an index with the sample used for clustering
index = NNDescent(embed_sample, n_neighbors=10)
# querying for all the data
nn = index.query(sup_embed_et, k=1)
# creating a dataframe with nearest neighbors for all samples
to_cluster_df = pd.DataFrame({'sample':range(sup_embed_et.shape[0]), 'cl_sample': nn[0].reshape(-1)})
# merging to assign cluster to all other samples, and tidying it
final_cluster_df = to_cluster_df.merge(clust_sample_df, on='cl_sample')
final_cluster_df = final_cluster_df.set_index('sample').sort_index()
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_et[:,0], sup_embed_et[:,1], s=1, c=final_cluster_df['cluster'], cmap='plasma')
plt.title('Hierarchical clustering and randomForest')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.show()
exit
Other R packages are known to outperform randomForest
both in terms of accuracy and speed so I would also like to get this information from ranger
and ExtraTrees
. 'ranger' for example, has excellent speed and support for high-dimensional or wide data (e.g. scRNA-sequencing data)
ranger
Here's what I've got so far with the ranger
method:
library(ranger)
library(pROC)
set.seed(123)
# ranger speed
system.time(
df_ranger <- ranger(
formula = labels ~ .,
data = d_train,
num.trees = 100,
num.threads = 1, # default is the number of CPUs on machine
probability = TRUE
)
) # user 13.047 system: 0.01 elapsed: 13.048
pred.ranger <- predict(df_ranger, data = d_test, type = "terminalNodes")
# get model accuracy
ranger.roc <- roc(d_test$labels, pred.ranger$predictions[,2])
pROC::auc(ranger.roc)
This model didn't perform well with 0.5471 AUC.
set.seed(123)
df_ranger <- ranger(formula = labels ~ ., data = df, num.trees = 100, probability = TRUE)
pred.ranger <- predict(df_ranger, data = df, type = "terminalNodes")
lyves <- pred.ranger$predictions
Now in enter repl_python()
and in Python enter:
# Assign R object as Python object
lyves = r.lyves
# Get embeddings from UMAP
sup_embed_rg = UMAP(metric='hamming').fit_transform(lyves)
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_rg[y == 0,0], sup_embed_rg[y == 0,1], s=1, c='C0', cmap='viridis', label='$y=0$')
plt.scatter(sup_embed_rg[y == 1,0], sup_embed_rg[y == 1,1], s=1, c='C1', cmap='viridis', label='$y=1$')
plt.title('Supervised embedding with ranger')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.legend(fontsize=16, markerscale=5);
plt.show()
# taking a sample of the dataframe
embed_sample = pd.DataFrame(sup_embed_rg).sample(5000, random_state=42)
# running fastcluster hierarchical clustering on the improved embedding
H = single(embed_sample)
# getting the clusters
clusters = cut_tree(H, height=0.35)
print('Number of clusters:', len(np.unique(clusters)))
This shows 17 clusters (although the simulated number was 20).
# creating a dataframe for the clustering sample
clust_sample_df = pd.DataFrame({'cluster': clusters.reshape(-1), 'cl_sample':range(len(clusters))})
# creating an index with the sample used for clustering
index = NNDescent(embed_sample, n_neighbors=10)
# querying for all the data
nn = index.query(sup_embed_et, k=1)
# creating a dataframe with nearest neighbors for all samples
to_cluster_df = pd.DataFrame({'sample':range(sup_embed_et.shape[0]), 'cl_sample': nn[0].reshape(-1)})
# merging to assign cluster to all other samples, and tidying it
final_cluster_df = to_cluster_df.merge(clust_sample_df, on='cl_sample')
final_cluster_df = final_cluster_df.set_index('sample').sort_index()
# plotting the embedding
plt.figure(figsize=(12,7), dpi=150)
plt.scatter(sup_embed_et[:,0], sup_embed_et[:,1], s=1, c=final_cluster_df['cluster'], cmap='plasma')
plt.title('Hierarchical clustering and ranger')
plt.xlabel('$x_0$'); plt.ylabel('$x_1$')
plt.show()
exit
extraTrees
The extraTrees
method, could be the closest comparison to scikit-learn
's ExtraTreesClassifier
.
library(extraTrees)
y <- "labels"
characteristics <- setdiff(names(d_train), y)
train <- d_train[, characteristics]
test <- d_test[, characteristics]
set.seed(123)
system.time({
model_extraTrees <- extraTrees(x = train,
y = as.factor(d_train$labels),
ntree = 500,
numThreads = 1 # must be set explicitly as the default is 1
)
}) # user 10.184 system: 0.104 elapsed: 9.770
UPDATE: At this time one cannot get the leaf indices from {extraTrees
} so I have made a feature request.
h20
In this excellent benchmark repo the machine learning library h2o
is shown to achieve a higher AUC so I want to try it out as well. I'll use 1 core
and ntrees = 100
like in all the other methods.
library(h2o)
h2o.init(nthreads = 1)
# convert data to h2o objects
train <- as.h2o(d_train)
test <- as.h2o(d_test)
# Convert response to factor (required by randomForest)
train[,ycol] <- as.factor(train[,ycol])
test[,ycol] <- as.factor(test[,ycol])
system.time(
model <- h2o.randomForest(
x = xcols,
y = ycol,
training_frame = train,
seed = 123,
ntrees = 100
)
) ## user: 0.199 system: 0.018 elapsed: 18.399
perf <- h2o.performance(model = model, newdata = test)
h2o.auc(perf)
The models performance is 0.9077 AUC - this is the best so far. I'm not sure if it's possible to get the leaf indices that were assigned?
There are, at least, 32 R packages for Random Forests.
If anyone is familiar with other packages with good performance that can get leaf indices I'd love to know about it. If you've noticed any errors please let me know, thank you.