The paper you reference uses notation a⊕b = x·y, but · and ∧ mean the same in this context: logical AND operation on single-bit variables.
This equality describes the requirement of the CHSH game. The game involves two players, Alice and Bob, who cannot communicate with one another. They are each given a single random bit (Alice gets X and Bob gets Y). Alice and Bob then output a single bit they choose independently based on their input bits (A from Alice and B from Bob) with the goal of satisfying the formula X · Y = A ⊕ B.
This game illustrates that quantum entanglement enables strategies that are dramatically better than the purely classical strategies. The best
classical strategy is for Alice and Bob to output 0 regardless of the input - this strategy wins the game 75% of the time. But a quantum strategy exists that allows them to win 85% of the time if they share an entangled pair of qubits before the start of the game.
You can read more on the CHSH game here.