I have a pandas dataframe like this:
tail_n | flight_route | Percentage_delay
_______________________________
'N14125' | '(VB, MI)' | 0.1
| '(CC, SK)' | 0.5
| '(KF, KC)' | 0.3
'N351JB' | '(AZ, AL)' | 0.2
| '(AU, NY)' | 1
'N938DN' | '(ALB, TPA)'| 0.1
| '(ORD, JAC)'| 0.1
I have a list of flight ID like this:
tail_n = ['N14125','N351JB', 'N938DN', 'N592AS', 'N614MQ', 'N8654B', 'N997DL', 'N852AA', 'N794SW', 'N37274', 'N899AT', 'N8315C','N479CA','N961DN', 'N3LPAA', 'N27205', 'N317US', 'N8653A', 'N454UA', 'N5CKAA', 'N904DA', 'N854UA', 'N73270', 'N33264', 'N3LEAA', 'N931DN', 'N6704Z', 'N944UW', 'N929JB', 'N626AW','N73276', 'N16976', 'N108UW', 'N905SW', 'N610WN', 'N437SW', 'N440LV']
My objective function is to minimize delay:
Minimize(summation(Percentage_delay*a) Where a is a binary decision variable which can be 0 or 1.
A constraint is that the number of tail must be less than 3752 and more thant 3000.
I was planning to use cplex with python.
I understand it is a really difficult problem but if someone is so kind to help me I would be really grateful.