open import Data.Nat using (ℕ;suc;zero)
open import Data.Rational
open import Data.Product
open import Relation.Nullary
open import Data.Bool using (Bool;false;true)
halve : ℕ → ℚ
halve zero = 1ℚ
halve (suc p) = ½ * halve p
∃-halve : ∀ {a b} → 0ℚ < a → a < b → ∃[ p ] (halve p * b < a)
∃-halve {a} {b} 0<a a<b = h 1 where
h : ℕ → ∃[ p ] (halve p * b < a)
h p with halve p * b <? a
h p | .true because ofʸ b'<a = p , b'<a
h p | .false because ofⁿ ¬b'<a = h (suc p)
The termination checker fails in that last case and it is no wonder as the recursion obviously is neither well funded nor structural. Nevertheless, I am quite sure this should be valid, but have no idea how to prove the termination of ∃-halve
. Any advice for how this might be done?