I want to run sklearn.ensemble.BaggingClassifier with CatBoostClassifier as estimator but the thing is there are some categorical features and this cause such error:
CatBoostError: 'data' is numpy array of floating point numerical type, it means no categorical features, but 'cat_features' parameter specifies nonzero number of categorical features
clf = CatBoostClassifier(task_type='GPU',
n_estimators=8000,
early_stopping_rounds=5,
verbose=250,
cat_features=['avg_day_of_week', 'avg_month', 'mode_subgroup', 'mode_small_group']
)
from sklearn.ensemble import BaggingClassifier
bag_clf = BaggingClassifier(clf, n_estimators=10, max_samples=0.8)
bag_clf.fit(X_train.drop('client_id', axis=1), y_train)
Is it possible to overcome this problem?