I am trying to compare java and kryo serialization and on saving the rdd on disk, it is giving the same size when saveAsObjectFile is used, but on persist it shows different in spark ui. Kryo one is smaller then java, but the irony is processing time of java is lesser then that of kryo which was not expected from spark UI?
val conf = new SparkConf()
.setAppName("kyroExample")
.setMaster("local[*]")
.set("spark.serializer", "org.apache.spark.serializer.KryoSerializer")
.registerKryoClasses(
Array(classOf[Person],classOf[Array[Person]])
)
val sparkContext = new SparkContext(conf)
val personList: Array[Person] = (1 to 100000).map(value => Person(value + "", value)).toArray
val rddPerson: RDD[Person] = sparkContext.parallelize(personList)
val evenAgePerson: RDD[Person] = rddPerson.filter(_.age % 2 == 0)
case class Person(name: String, age: Int)
evenAgePerson.saveAsObjectFile("src/main/resources/objectFile")
evenAgePerson.persist(StorageLevel.MEMORY_ONLY_SER)
evenAgePerson.count()