Given that I have the following patsy formula,
'y ~ a + b + c'
and pass it to statsmodels.ols, how can a add a regularization term to the regression coefficients?
In this case, I wish to create my own penalisation function, not simply use ridge, lasso or elasticnet regression.
Here is a reproducable example with similar data to my problem:
import numpy as np
import pandas as pd
import statsmodels.api as sm
import statsmodels.formula.api as smf
a = np.clip(np.random.normal(loc=60, scale=40, size=(100)), 0, 100)
b = np.clip(np.random.normal(loc=40, scale=40, size=(100)), 0, 100)
c = np.clip(np.random.normal(loc=20, scale=20, size=(100)), 0, 100)
y = (
32 * (a + 8 * np.random.random(a.shape))
+ 21 * (b + 5 * np.random.random(b.shape))
+ 36 * (c + 5 * np.random.random(c.shape))
) + (50 * np.random.random(a.shape))
data = pd.DataFrame(
data=np.array([a, b, c, y]).T,
columns=['a', 'b', 'c', 'y']
)
formula = 'y ~ a + b + c'
mod = smf.ols(formula=formula, data=data,)