Since I’m a beginner in ML, this question or the design overall may sound silly, sorry about that. I’m open to any suggestions.
I have a simple network with three linear layers one of which is output layer.
self.fc1 = nn.Linear(in_features=2, out_features=12)
self.fc2 = nn.Linear(in_features=12, out_features=16)
self.out = nn.Linear(in_features=16, out_features=4)
My states are consisting of two values, coordinate x and y. That’s why input layer has two features.
In main.py I’m sampling and extracting memories in ReplayMemory class and pass them to get_current function:
experiences = memory.sample(batch_size)
states, actions, rewards, next_states = qvalues.extract_tensors(experiences)
current_q_values = qvalues.QValues.get_current(policy_net, states, actions)
Since a single state is consisting of two values, length of the states tensor is batchsize x 2 while length of the actions is batchsize. (Maybe that’s the problem?)
When I pass “states” to my network in get_current function to obtain predicted q-values for the state, I get this error:
size mismatch, m1: [1x16], m2: [2x12]
It looks like it is trying to grab the states tensor as if it is a single state tensor. I don’t want that. In the tutorials that I follow, they pass the states tensor which is a stack of multiple states, and there is no problem. What am I doing wrong? :)
This is how I store an experience:
memory.push(dqn.Experience(state, action, next_state, reward))
This is my extract tensors function:
def extract_tensors(experiences):
# Convert batch of Experiences to Experience of batches
batch = dqn.Experience(*zip(*experiences))
state_batch = torch.cat(tuple(d[0] for d in experiences))
action_batch = torch.cat(tuple(d[1] for d in experiences))
reward_batch = torch.cat(tuple(d[2] for d in experiences))
nextState_batch = torch.cat(tuple(d[3] for d in experiences))
print(action_batch)
return (state_batch,action_batch,reward_batch,nextState_batch)
Tutorial that I follow is this project's tutorial.
https://github.com/nevenp/dqn_flappy_bird/blob/master/dqn.py
Look between 148th and 169th lines. And especially 169th line where it passes the states batch to the network.