Does anyone used any optimization models on fitted sklearn models?
What I'd like to do is fit model based on train data and using this model try to find the best combination of parameters for which model would predict the biggest value.
Some example, simplified code:
import pandas as pd
df = pd.DataFrame({
'temperature': [10, 15, 30, 20, 25, 30],
'working_hours': [10, 12, 12, 10, 30, 15],
'sales': [4, 7, 6, 7.3, 10, 8]
})
from sklearn.ensemble import RandomForestRegressor
model = RandomForestRegressor()
X = df.drop(['sales'], axis=1)
y = df['sales']
model.fit(X, y);
Our baseline is a simple loop and predict all combination of variables:
results = pd.DataFrame(columns=['temperature', 'working_hours', 'sales_predicted'])
import numpy as np
for temp in np.arange(1,100.01,1):
for work_hours in np.arange(1,60.01,1):
results = pd.concat([
results,
pd.DataFrame({
'temperature': temp,
'working_hours': work_hours,
'sales_predicted': model.predict(np.array([temp, work_hours]).reshape(1,-1))
}
)
]
)
print(results.sort_values(by='sales_predicted', ascending=False))
Using that way it's difficult or impossible to: * do it fast (brute method) * implement constraint concerning two or more variables dependency
We tried PuLP library and PyOmo library, but both doesn't allow to put model.predict function as an objective function returning error:
TypeError: float() argument must be a string or a number, not 'LpVariable'
Do anyone have any idea how we can get rid off loop and use some other stuff?