I have designed a NN with Keras and the code after defining the model are the following:
model.compile(optimizer= 'Adam',loss='mean_squared_error')
##callbacks
cb_checkpoint = ModelCheckpoint("model.h5", monitor='val_loss', save_weights_only=True,save_best_only=True, save_freq=1)
cb_Early_Stop=EarlyStopping( monitor='val_loss',patience=5)
cb_Reduce_LR = ReduceLROnPlateau(monitor='val_loss', factor=0.3, patience=5, verbose=0, mode='auto', min_delta=0.0001,
cooldown=0, min_lr=0)
callbacks = [cb_checkpoint,cb_Early_Stop,cb_Reduce_LR]
history = model.fit(
x = {'inputsA': inputsA, 'inputsB': inputsB, 'inputsC': inputsC, 'inputsD': inputsD, 'input_site_id': site_id, 'input_building_id': building_id,
'input_meter': meter, 'input_primary_use': primary_use,
'input_week': week, 'input_floor_count': floor_count, 'input_month': month, 'input_hour': hour} , y = {'predictions' : target}, batch_size = 16, epochs = 1000,
validation_split = 0.1,
callbacks=callbacks)
When I begin the fit process I get this kind of output during the first epoch:
Train on 1799857 samples, validate on 199985 samples
Epoch 1/1000
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
16/1799857 [..............................] - ETA: 60:50:41 - loss: 77.3295WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
112/1799857 [..............................] - ETA: 8:55:07 - loss: 112.8611WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
208/1799857 [..............................] - ETA: 4:55:23 - loss: 87.5595 WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
320/1799857 [..............................] - ETA: 3:17:30 - loss: 78.3782WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
432/1799857 [..............................] - ETA: 2:29:53 - loss: 70.0334WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
WARNING:tensorflow:Can save best model only with val_loss available, skipping.
I would like to suppress this output and get an update on the train and val loss at the end of each epoch only.
How can I achieve this?