The "usual" padding scheme, described in PKCS#1 as the "old-style, v1.5" padding, is deterministic. It works like this:
- The data to sign is hashed (e.g. with SHA-1).
- A fixed header is added; that header is actually an ASN.1 structure which identifies the hash function which was just used to process the data.
- Padding bytes are added (on the left): 0x00, then 0x01, then some 0xFF bytes, then 0x00. The number of 0xFF bytes is adjusted so that the resulting total length is exactly the byte length of the modulus (i.e. 128 bytes for a 1024-bit RSA key).
- The padded value is converted to an integer (which is less than the modulus), which goes through the modular exponentiation which is at the core of RSA. The result is converted back to a sequence of bytes, and that's the signature.
All these operations are deterministic, there is no random, hence it is normal and expected that signing the same data with the same key and the same hash function will yield the same signature ever and ever.
However there is a slight underspecification in the ASN.1-based fixed header. This is a structure which identifies the hash function, along with "parameters" for that hash function. Usual hash functions take no parameters, hence the parameters shall be represented with either a special "NULL" value (which takes a few bytes), or be omitted altogether: both representations are acceptable (although the former is supposedly preferred). So, the raw effect is that there are two versions of the "fixed header", for a given hash function. OpenSSL and Bouncycastle do not use the same header. However, signature verifiers are supposed to accept both.
PKCS#1 also describes a newer padding scheme, called PSS, which is more complex but with a stronger security proof. PSS includes a bunch of random bytes, so you will get a distinct signature every time.