I've set up a Spark structured streaming query that reads from a Kafka topic. If the number of partitions in the topic is changed while the Spark query is running, Spark does not seem to notice and data on new partitions is not consumed.
Is there a way to tell Spark to check for new partitions in the same topic apart from stopping the query an restarting it?
EDIT: I'm using Spark 2.4.4. I read from kafka as follows:
spark
.readStream
.format("kafka")
.option("kafka.bootstrap.servers", kafkaURL)
.option("startingOffsets", "earliest")
.option("subscribe", topic)
.option("failOnDataLoss", value = false)
.load()
after some processing, I write to HDFS on a Delta Lake table.