I am trying to use collect_set to get a list of strings of categorie_names that are NOT part of groupby. My code is
from pyspark import SparkContext
from pyspark.sql import HiveContext
from pyspark.sql import functions as F
sc = SparkContext("local")
sqlContext = HiveContext(sc)
df = sqlContext.createDataFrame([
("1", "cat1", "Dept1", "product1", 7),
("2", "cat2", "Dept1", "product1", 100),
("3", "cat2", "Dept1", "product2", 3),
("4", "cat1", "Dept2", "product3", 5),
], ["id", "category_name", "department_id", "product_id", "value"])
df.show()
df.groupby("department_id", "product_id")\
.agg({'value': 'sum'}) \
.show()
# .agg( F.collect_set("category_name"))\
The output is
+---+-------------+-------------+----------+-----+
| id|category_name|department_id|product_id|value|
+---+-------------+-------------+----------+-----+
| 1| cat1| Dept1| product1| 7|
| 2| cat2| Dept1| product1| 100|
| 3| cat2| Dept1| product2| 3|
| 4| cat1| Dept2| product3| 5|
+---+-------------+-------------+----------+-----+
+-------------+----------+----------+
|department_id|product_id|sum(value)|
+-------------+----------+----------+
| Dept1| product2| 3|
| Dept1| product1| 107|
| Dept2| product3| 5|
+-------------+----------+----------+
I want to have this output
+-------------+----------+----------+----------------------------+
|department_id|product_id|sum(value)| collect_list(category_name)|
+-------------+----------+----------+----------------------------+
| Dept1| product2| 3| cat2 |
| Dept1| product1| 107| cat1, cat2 |
| Dept2| product3| 5| cat1 |
+-------------+----------+----------+----------------------------+
Attempt 1
df.groupby("department_id", "product_id")\
.agg({'value': 'sum'}) \
.agg(F.collect_set("category_name")) \
.show()
I got this error:
pyspark.sql.utils.AnalysisException: "cannot resolve '
category_name
' given input columns: [department_id, product_id, sum(value)];;\n'Aggregate [collect_set('category_name, 0, 0) AS collect_set(category_name)#35]\n+- Aggregate [department_id#2, product_id#3], [department_id#2, product_id#3, sum(value#4L) AS sum(value)#24L]\n +- LogicalRDD [id#0, category_name#1, department_id#2, product_id#3, value#4L]\n"
Attempt 2 I put category_name as part of groupby
df.groupby("category_name", "department_id", "product_id")\
.agg({'value': 'sum'}) \
.agg(F.collect_set("category_name")) \
.show()
It works but output is not correct
+--------------------------+
|collect_set(category_name)|
+--------------------------+
| [cat1, cat2]|
+--------------------------+