I'm new to Tensorflow. I followed some tutorials with a provided dataset and wanted to try something on my own. I decided I'd try to classify Magic the Gathering sets. Each card has a symbol in different colors on it: Black, Gold and so on.
The colors don't matter, just the different symbols. So I created a dataset of 3 different sets (so 3 different symbols) and got around 15'000 images like this. Some are a little bit rotated, some have an X and Y offset, just to get some different images.
Then I adapted the tutorial on the tensorflow website for image classification. Instead of two classes I wanted to try three:
batch_size = 250
epochs = 3
IMG_HEIGHT = 55
IMG_WIDTH = 55
train_image_generator = ImageDataGenerator(rescale=1./255)
validation_image_generator = ImageDataGenerator(rescale=1./255)
train_data_gen = train_image_generator.flow_from_directory(batch_size=batch_size,
directory=train_dir,
shuffle=True,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='binary')
val_data_gen = validation_image_generator.flow_from_directory(batch_size=batch_size,
directory=validation_dir,
target_size=(IMG_HEIGHT, IMG_WIDTH),
class_mode='binary')
model = Sequential([
Conv2D(16, 3, padding='same', activation='relu', input_shape=(IMG_HEIGHT, IMG_WIDTH ,3)),
MaxPooling2D(),
Conv2D(32, 3, padding='same', activation='relu'),
MaxPooling2D(),
Conv2D(64, 3, padding='same', activation='relu'),
MaxPooling2D(),
Flatten(),
Dense(512, activation='relu'),
Dense(1, activation='sigmoid')
])
model.compile(optimizer='adam',
loss='binary_crossentropy',
metrics=['accuracy'])
history = model.fit_generator(
train_data_gen,
steps_per_epoch=total_train // batch_size,
epochs=epochs,
validation_data=val_data_gen,
validation_steps=total_val // batch_size,
callbacks=[cp_callback]
)
But my loss is negative and I don't get a good accuracy after training. What did I mess up? Is the model used in the tutorial not good for my usecase? Or is there an error in the code because I used three instead of two classes?