I have some spatiotemporal data derived from the CHIRPS Database. It is a NetCDF that contains daily precipitation for all over the world with a spatial resolution of 1x1km2. The DataSet possesses 3 dimensions ('time', 'longitude', 'latitude').
I would like to bin this precipitation data according to each pixel's coordinate ('latitude' & 'longitude') temporal distribution. Therefore, the dimension I wish to apply the binnarization is the 'time' domain.
This is a similar question already discussed in StackOverflow (see in here). The difference between their Issue and mine is that, in my case, I need to binnarize the data according to each specific pixel's temporal distribution, instead of applying a single range of values for binnarization for all my coordinates (pixels). As a consequence, I expect to have different binning thresholds ('n' sets of thresholds), one for each of the 'n' pixels in my dataset.
As far as I understand, the simplest and fastest way to apply a function over each of the coordinates (pixels) of a Xarray's DataArray/DataSet is to use the xarray.apply_ufunc.
For the binnarization, I am using the pandas qcut method, which only requires an array of values and some given relative frequency (i.e.: [0.1%, 0.5%, 25%, 99%]) in order for it to work.
Since pandas binning function requires an array of data, and it also returns another array of binnarized data, I understand that I have to use the argument "vectorize"=True in the U_function (described in here).
Finally, when I run the analysis, The resulted Xarray DataSet ends up losing the 'time' dimension after the processing. Also, I get unsure whether that processing truly returned an Xarray DataSet with data properly classified.
Here is a reproducible snippet code. Notice that the 'time' dimension of the "ds_binned" is lost. Therefore, I have to later insert the binned data back to the original xarray dataset (ds). Also notice that the dimensions are not set in proper order. That also is causing problems for my analysis.
import pandas as pd
pd.set_option('display.width', 50000)
pd.set_option('display.max_rows', 50000)
pd.set_option('display.max_columns', 5000)
import numpy as np
import xarray as xr
from dask.diagnostics import ProgressBar
ds = xr.tutorial.open_dataset('rasm').load()
def parse_datetime(time):
return pd.to_datetime([str(x) for x in time])
ds.coords['time'] = parse_datetime(ds.coords['time'].values)
def binning_function(x, distribution_type='Positive', b=False):
y = np.where(np.abs(x)==np.inf, 0, x)
y = np.where(np.isnan(y), 0, y)
if np.all(y) == 0:
return x
else:
Classified = pd.qcut(y, np.linspace(0.01, 1, 10))
return Classified.codes
def xarray_parse_extremes(ds, dim=['time'], dask='allowed', new_dim_name=['classes'], kwargs={'b': False, 'distribution_type':'Positive'}):
filtered = xr.apply_ufunc(binning_function,
ds,
dask=dask,
vectorize=True,
input_core_dims=[dim],
#exclude_dims = [dim],
output_core_dims=[new_dim_name],
kwargs=kwargs,
output_dtypes=[float],
join='outer',
dataset_fill_value=np.nan,
).compute()
return filtered
with ProgressBar():
da_binned = xarray_parse_extremes(ds['Tair'] ,
['time'],
dask='allowed')
da_binned.name = 'classes'
ds_binned = da_binned.to_dataset()
ds['classes'] = (('y', 'x', 'time'), ds_binned['classes'].values)
mask = (ds['classes'] >= 5) & (ds['classes'] != 0)
ds.where(mask, drop=True).resample({'time':'Y'}).count('time')['Tair'].isel({'time':-1}).plot()
print(ds)
(ds.where(mask, drop=True).resample({'time':'Y'}).count('time')['Tair']
.to_dataframe().dropna().sort_values('Tair', ascending=False)
)
delayed_to_netcdf = ds.to_netcdf(r'F:\Philipe\temp\teste_tutorial.nc',
engine='netcdf4',
compute =False)
print('saving data classified')
with ProgressBar():
delayed_to_netcdf.compute()