I'm working on an assignment that gives an integer N and tasks us to find all possible combinations of X, Y such that X + Y = N and Y = X with one digit removed. For example, 302 would have the following solutions:
251 + 51 = 302
275 + 27 = 302
276 + 26 = 302
281 + 21 = 302
301 + 01 = 302
My code to accomplish this can find all of the correct answers, but it runs too slowly for very large numbers (it takes roughly 8 seconds for the largest possible number, 10^9, when I would like for the entire algorithm of up to 100 of these cases to complete in under 3 seconds).
Here's some code describing my current solution:
//Only need to consider cases where x > y.
for(int x = n * 0.5; x <= n; x++)
{
//Only considers cases where y's rightmost digit could align with x.
int y = n - x,
y_rightmost = y % 10;
if(y_rightmost == x % 10 || y_rightmost == (x % 100) / 10)
{
//Determines the number of digits in x and y without division. places[] = {1, 10, 100, 1000, ... 1000000000}
int x_numDigits = 0,
y_numDigits = 0;
while(x >= places[x_numDigits])
{
if(y >= places[x_numDigits])
y_numDigits++;
x_numDigits++;
}
//y must have less digits than x to be a possible solution.
if(y_numDigits < x_numDigits)
{
if(func(x, y))
{
//x and y are a solution.
}
}
}
Where func is a function to determine if x and y only have a one digit difference. Here's my current method for calculating that:
bool func(int x, int y)
{
int diff = 0;
while(y > 0)
{
if(x % 10 != y % 10)
{
//If the rightmost digits do not match, move x to the left once and check again.
x /= 10;
diff++;
if(diff > 1)
return false;
}
else
{
//If they matched, both move to the next digit.
x /= 10;
y /= 10;
}
}
//If the last digit in x is the only difference or x is composed of 0's led by 1 number, then x, y is a solution.
if((x < 10 && diff == 0) || (x % 10 == 0))
return true;
else
return false;
}
This is the fastest solution that I've been able to find so far (other methods I tried included converting X and Y into strings and using a custom subsequence function, along with dividing X into a prefix and suffix without each digit from the right to the left and seeing if any of these summed to Y, but neither worked as quickly). However, it still doesn't scale as well as I need it to with larger numbers, and I'm struggling to think of any other ways to optimize the code or underlying mathematical reasoning. Any advice would be greatly appreciated.