0

I am trying to implement a ListFlatten function, I have implemented it using SimpleDoFn which is working fine but for parallelizing. I am converting the function to Splittable Do Function. I managed to get a unit test running in local with 5000 elements using DirectRunner while running the same in DataFlow, it is failing with below error.

Error Details: 
java.lang.RuntimeException: org.apache.beam.sdk.util.UserCodeException: java.lang.RuntimeException: java.io.IOException: INVALID_ARGUMENT: Shuffle key too large:3749653 > 1572864
at org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn$1.output (GroupAlsoByWindowsParDoFn.java:184)
at org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner$1.outputWindowedValue (GroupAlsoByWindowFnRunner.java:102)
at org.apache.beam.runners.dataflow.worker.util.BatchGroupAlsoByWindowViaIteratorsFn.processElement (BatchGroupAlsoByWindowViaIteratorsFn.java:126)
at org.apache.beam.runners.dataflow.worker.util.BatchGroupAlsoByWindowViaIteratorsFn.processElement (BatchGroupAlsoByWindowViaIteratorsFn.java:54)
at org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.invokeProcessElement (GroupAlsoByWindowFnRunner.java:115)
at org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowFnRunner.processElement (GroupAlsoByWindowFnRunner.java:73)
at org.apache.beam.runners.dataflow.worker.GroupAlsoByWindowsParDoFn.processElement (GroupAlsoByWindowsParDoFn.java:114)
at org.apache.beam.runners.dataflow.worker.util.common.worker.ParDoOperation.process (ParDoOperation.java:44)
at org.apache.beam.runners.dataflow.worker.util.common.worker.OutputReceiver.process (OutputReceiver.java:49)
at org.apache.beam.runners.dataflow.worker.util.common.worker.ReadOperation.runReadLoop (ReadOperation.java:201)
Caused by: org.apache.beam.sdk.util.UserCodeException: java.lang.RuntimeException: java.io.IOException: INVALID_ARGUMENT: Shuffle key too large:3749653 > 1572864
at com.abc.common.batch.functions.AbcListFlattenFn.splitRestriction (AbcListFlattenFn.java:68)

The differences in data between local DirectRunner and Cloud DataFlow runner are given below.

DirectRunner in local:

  1. It has 5000 abcs in the sample input PCollection element

DataflowRunner in cloud:

  1. There are varying sizes of abcs in 600 input PCollection elements
  2. Few input elements have 50000 abcs to flatten
   public class AbcList implements Serializable {
        private List<Abc> abcs;
        private List<Xyz> xyzs;
   }

        public class AbcListFlattenFn extends DoFn<AbcList, KV<Abc, List<Xyz>> {

            @ProcessElement
            public void process(@Element AbcList input,
                ProcessContext context, RestrictionTracker<OffsetRange, Long> tracker) {

                try {
            /* Below commented lines are without the Splittable DoFn
                       input.getAbcs().stream().forEach(abc -> {
                                context.output(KV.of(abc, input.getXyzs()));
                         }); */

                    for (long index = tracker.currentRestriction().getFrom(); tracker.tryClaim(index);
                        ++index) {
                        context.output(KV.of(input.getAbcs().get(Math.toIntExact(index),input.getXyzs())));
                    }
                } catch (Exception e) {
                    log.error("Flattening AbcList has failed ", e);
                }

            }

            @GetInitialRestriction
            public OffsetRange getInitialRestriction(AbcList input) {
                return new OffsetRange(0, input.getAbcs().size());
            }

            @SplitRestriction
            public void splitRestriction(final AbcList input,
                final OffsetRange range, final OutputReceiver<OffsetRange> receiver) {
              List<OffsetRange> ranges =
                  range.split(input.getAbcs().size() > 5000 ? 5000
                        : input.getAbcs().size(), 2000);
                for (final OffsetRange p : ranges) {
                    receiver.output(p);
                }
            }

            @NewTracker
            public OffsetRangeTracker newTracker(OffsetRange range) {
                return new OffsetRangeTracker(range);
            }
        }

Can someone suggest what is wrong with the ListFlatten function here? is splitRestriction causing the below issue? How can I fix this Shuffle key size problem?

Kolban
  • 13,794
  • 3
  • 38
  • 60

1 Answers1

1

The shuffle key size limit is owing to the proto size. In order to get rid of this problem, you probably want to add a Reshuffle before your SDF. Reshuffle will help you do the first round of distribution.