I have the following piece of code
#include <iostream>
#include <iomanip>
int main()
{
double x = 7033753.49999141693115234375;
double y = 7033753.499991415999829769134521484375;
double z = (x+ y)/2.0;
std::cout << "y is " << std::setprecision(40) << y << "\n";
std::cout << "x is " << std::setprecision(40) << x << "\n";
std::cout << "z is " << std::setprecision(40) << z << "\n";
return 0;
}
When the above code is run I get,
y is 7033753.499991415999829769134521484375
x is 7033753.49999141693115234375
z is 7033753.49999141693115234375
When I do the same in Wolfram Alpha the value of z is completely different
z = 7033753.4999914164654910564422607421875 #Wolfram answer
I am familiar with floating point precision and that large numbers away from zero can not be exactly represented. Is that what is happening here? Is there anyway in c++ where I can get the same answer as Wolfram without any performance penalty?