For the specific case of printing out a result of the percentage chance of an image being either X% cat, %Y dog, this particular tensorflow tutorial might be more useful.
In it, they do go through how to plot out the percentage likelihoods, as well as most of the basics of using tensorflow.
After you train your model, you can use some more code to show the results in a graphical way, like the following code from the tutorial:
def plot_image(i, predictions_array, true_label, img):
predictions_array, true_label, img = predictions_array, true_label[i], img[i]
plt.grid(False)
plt.xticks([])
plt.yticks([])
plt.imshow(img, cmap=plt.cm.binary)
predicted_label = np.argmax(predictions_array)
if predicted_label == true_label:
color = 'blue'
else:
color = 'red'
plt.xlabel("{} {:2.0f}% ({})".format(class_names[predicted_label],
100*np.max(predictions_array),
class_names[true_label]),
color=color)
def plot_value_array(i, predictions_array, true_label):
predictions_array, true_label = predictions_array, true_label[i]
plt.grid(False)
plt.xticks(range(10))
plt.yticks([])
thisplot = plt.bar(range(10), predictions_array, color="#777777")
plt.ylim([0, 1])
predicted_label = np.argmax(predictions_array)
thisplot[predicted_label].set_color('red')
thisplot[true_label].set_color('blue')
Then, with the following code, you can make some plots about the results:

As for accessing your model and saving it, the following tensorflow tutorial may be usefull.
Hope that helps!