Suppose I have a record type for some algebraic structure; e.g. for monoids:
{-# OPTIONS --cubical #-}
module _ where
open import Cubical.Core.Everything
open import Cubical.Foundations.Everything hiding (assoc)
record Monoid {ℓ} (A : Type ℓ) : Type ℓ where
field
set : isSet A
_⋄_ : A → A → A
e : A
eˡ : ∀ x → e ⋄ x ≡ x
eʳ : ∀ x → x ⋄ e ≡ x
assoc : ∀ x y z → (x ⋄ y) ⋄ z ≡ x ⋄ (y ⋄ z)
Then I can manually create a type for monoid homomorphisms:
record Hom {ℓ ℓ′} {A : Type ℓ} {B : Type ℓ′} (M : Monoid A) (N : Monoid B) : Type (ℓ-max ℓ ℓ′) where
open Monoid M renaming (_⋄_ to _⊕_)
open Monoid N renaming (_⋄_ to _⊗_; e to ε)
field
map : A → B
map-unit : map e ≡ ε
map-op : ∀ x y → map (x ⊕ y) ≡ map x ⊗ map y
But is there a way to define Hom
without spelling out the homomorphism laws? So as some kind of mapping from the witness M : Monoid A
to N : Monoid B
, but that doesn't make much sense to me because it'd be a "mapping" where we already know that it should map M
to N
...