Your question is a little unclear, leading to different possible answers. I'll try to cover some of the possible areas:
Object encapsulation
If your goal is to provide interfaces to different clients that only provide certain functionality or a specific view there are several solutions. Which matches best depends on the purpose of your class:
Refactoring
The question somehow suggests that your class is responsible for different tasks. That might be an indicator, that you could tear it apart into distinct classes that provide the different interfaces.
Original
class AllInOne {
A m1() {}
B m2() {}
C m3() {}
}
client1.useClass(allInOneInstance);
client2.useClass(allInOneInstance);
client3.useClass(allInOneInstance);
Derived
class One {
A m1() {}
}
class Two {
B m2() {}
}
class Three {
C m3() {}
}
client1.useClass(oneInstance);
client2.useClass(twoInstance);
client3.useClass(threeInstance);
Interfaces
If you choose to keep the class together (there might be good reasons for it), you could have the class implement interfaces that model the view required by different clients. By passing instances of the appropriate interface to the clients they will not see the full class interface:
Example
class AllInOne implements I1, I2, I3 {
...
}
interface I1 {
A m1();
}
But be aware that clients will still be able to cast to the full class like ((AllInOne) i1Instance).m2()
.
Inheritance
This was already outline in other answers. I'll therefore skip this here. I don't think this is a good solution as it might easily break in a lot of scenarios.
Delegation
If casting is a risk to you, you can create classes that only offer the desired interface and delegate to the actual implementation:
Example
class Delegate1 {
private AllInOne allInOne;
public A m1() {
return allInOne.m1();
}
}
Implementing this can be done in various ways and depends on your environment like explicit classes, dynamic proxies , code generation, ...
Framework
If you are using an Application Framework like Spring you might be able to use functionality from this Framework.
Aspects
AOP allows you to intercept method calls and therefor apply some access control logic there.
Security
Please note that all of the above solutions will not give you actual security. Using casts, reflection or other techniques will still allow clients to obtain access to the full functionality.
If you require stronger access limitations there are techniques that I will just briefly outline as they might depend on your environment and are more complex.
Class Loader
Using different class loaders you can make sure that parts of your code have no access to class definitions outsider their scope (used e.g. in tomcat to isolate different deployments).
SecurityManager
Java offers possibilities to implement your own SecurityManager
this offers ways to add some extra level of access checking.
Custom build Security
Of course you can add your own access checking logic. Yet I don't think this will be a viable solution for in JVM method access.