As Patrick mentioned, these sorts of operations over arbitrary sets (like summing them up) is just not possible in SMTLib. However, you've more information: You know that the cardinality of the set is 5, so you can encode the summation indirectly.
The trick is to construct a set of the required cardinality explicitly and sum those elements. Obviously this only works well if the set is small enough, but you can "generate" the code automatically from a high-level API if necessary. (Hand coding it would be difficult!)
The below works with z3; Unfortunately CVC4 and Z3 differ in the function names for Sets
a bit:
(set-option :produce-models true)
; declare-original set
(declare-fun A () (Set Int))
(assert (= 5 (card A)))
; declare the "elements". We know there are 5 in this case. Declare one for each.
(declare-fun elt1 () Int)
(declare-fun elt2 () Int)
(declare-fun elt3 () Int)
(declare-fun elt4 () Int)
(declare-fun elt5 () Int)
; form the set out of these elements:
(define-fun B () (Set Int) (store (store (store (store (store ((as const (Array Int Bool)) false) elt1 true)
elt2 true)
elt3 true)
elt4 true)
elt5 true))
; make sure our set is equal to the set just constructed:
(assert (= A B))
; now sum-up the elements
(declare-fun sum () Int)
(assert (= sum (+ elt1 elt2 elt3 elt4 elt5)))
(check-sat)
(get-value (elt1 elt2 elt3 elt4 elt5 sum A))
This produces:
$ z3 a.smt2
sat
((elt1 0)
(elt2 1)
(elt3 3)
(elt4 6)
(elt5 7)
(sum 17)
(A (let ((a!1 (store (store (store ((as const (Set Int)) false) 0 true) 1 true)
3
true)))
(store (store a!1 6 true) 7 true))))
For CVC4, the encoding is similar:
(set-option :produce-models true)
(set-logic ALL_SUPPORTED)
; declare-original set
(declare-fun A () (Set Int))
(assert (= 5 (card A)))
; declare the "elements". We know there are 5 in this case. Declare one for each.
(declare-fun elt1 () Int)
(declare-fun elt2 () Int)
(declare-fun elt3 () Int)
(declare-fun elt4 () Int)
(declare-fun elt5 () Int)
; form the set out of these elements:
(define-fun B () (Set Int) (union (singleton elt1)
(union (singleton elt2)
(union (singleton elt3)
(union (singleton elt4) (singleton elt5))))))
; make sure our set is equal to the set just constructed:
(assert (= A B))
; now sum-up the elements
(declare-fun sum () Int)
(assert (= sum (+ elt1 elt2 elt3 elt4 elt5)))
(check-sat)
(get-value (elt1 elt2 elt3 elt4 elt5 sum A))
For which, cvc4 produces:
sat
((elt1 (- 4)) (elt2 (- 3)) (elt3 (- 2)) (elt4 (- 1)) (elt5 0) (sum (- 10)) (A (union (union (union (union (singleton 0) (singleton (- 1))) (singleton (- 2))) (singleton (- 3))) (singleton (- 4)))))
If the cardinality isn't fixed; I don't think you can code this up unless the domain is finite (or drawn from a finite subset of an infinite domain) as Patrick described.
Hope that helps!