A Simple Guide to Connection Pooling in Java
Author - Baeldung
About Author
A Simple Implementation
To better understand the underlying logic of connection pooling, let's
create a simple implementation.
Let's start out with a loosely-coupled design, based on just one
single interface:
public interface ConnectionPool {
Connection getConnection();
boolean releaseConnection(Connection connection);
String getUrl();
String getUser();
String getPassword();
}
The ConnectionPool interface defines the public API of a basic
connection pool.
Now, let's create an implementation, which provides some basic
functionality, including getting and releasing a pooled connection:
public class BasicConnectionPool
implements ConnectionPool {
private String url;
private String user;
private String password;
private List<Connection> connectionPool;
private List<Connection> usedConnections = new ArrayList<>();
private static int INITIAL_POOL_SIZE = 10;
public static BasicConnectionPool create(
String url, String user,
String password) throws SQLException {
List<Connection> pool = new ArrayList<>(INITIAL_POOL_SIZE);
for (int i = 0; i < INITIAL_POOL_SIZE; i++) {
pool.add(createConnection(url, user, password));
}
return new BasicConnectionPool(url, user, password, pool);
}
// standard constructors
@Override
public Connection getConnection() {
Connection connection = connectionPool
.remove(connectionPool.size() - 1);
usedConnections.add(connection);
return connection;
}
@Override
public boolean releaseConnection(Connection connection) {
connectionPool.add(connection);
return usedConnections.remove(connection);
}
private static Connection createConnection(
String url, String user, String password)
throws SQLException {
return DriverManager.getConnection(url, user, password);
}
public int getSize() {
return connectionPool.size() + usedConnections.size();
}
// standard getters
}
Connection pooling is a well-known data access pattern, whose main
purpose is to reduce the overhead involved in performing database
connections and read/write database operations.
In a nutshell, a connection pool is, at the most basic level, a
database connection cache implementation, which can be configured to
suit specific requirements.
In this tutorial, we'll make a quick roundup of a few popular
connection pooling frameworks, and we'll learn how to implement from
scratch our own connection pool.
Why Connection Pooling?
The question is rhetorical, of course.
If we analyze the sequence of steps involved in a typical database
connection life cycle, we'll understand why:
Opening a connection to the database using the database driver Opening
a TCP socket for reading/writing data Reading / writing data over the
socket Closing the connection Closing the socket It becomes evident
that database connections are fairly expensive operations, and as
such, should be reduced to a minimum in every possible use case (in
edge cases, just avoided).
Here's where connection pooling implementations come into play.
By just simply implementing a database connection container, which
allows us to reuse a number of existing connections, we can
effectively save the cost of performing a huge number of expensive
database trips, hence boosting the overall performance of our
database-driven applications.
JDBC Connection Pooling Frameworks
From a pragmatic perspective, implementing a connection pool from the
ground up is just pointless, considering the number of
“enterprise-ready” connection pooling frameworks available out there.
From a didactic one, which is the goal of this article, it's not.
Even so, before we learn how to implement a basic connection pool,
let's first showcase a few popular connection pooling frameworks.
Apache Commons DBCP
public class DBCPDataSource {
private static BasicDataSource ds = new BasicDataSource();
static {
ds.setUrl("jdbc:h2:mem:test");
ds.setUsername("user");
ds.setPassword("password");
ds.setMinIdle(5);
ds.setMaxIdle(10);
ds.setMaxOpenPreparedStatements(100);
}
public static Connection getConnection() throws SQLException {
return ds.getConnection();
}
private DBCPDataSource(){ }
}
In this case, we've used a wrapper class with a static block to easily
configure DBCP's properties.
Here's how to get a pooled connection with the DBCPDataSource class:
connection con = DBCPDataSource.getConnection();
HikariCP
public class HikariCPDataSource {
private static HikariConfig config = new HikariConfig();
private static HikariDataSource ds;
static {
config.setJdbcUrl("jdbc:h2:mem:test");
config.setUsername("user");
config.setPassword("password");
config.addDataSourceProperty("cachePrepStmts", "true");
config.addDataSourceProperty("prepStmtCacheSize", "250");
config.addDataSourceProperty("prepStmtCacheSqlLimit", "2048");
ds = new HikariDataSource(config);
}
public static Connection getConnection() throws SQLException {
return ds.getConnection();
}
private HikariCPDataSource(){}
}
Similarly, here's how to get a pooled connection with the
HikariCPDataSource class:
Connection con = HikariCPDataSource.getConnection();