I have images of around 2000 X 2000
pixels. The objects that I am trying to identify are of smaller sizes (typically around 100 X 100
pixels), but there are lot of them.
I don't want to resize the input images, apply object detection and rescale the output back to the original size. The reason for this is I have very few images to work with and I would prefer cropping (which would lead to multiple training instances per image) over resizing to smaller size (this would give me 1 input image per original image).
Is there a sophisticated way or cropping and reassembling images for object detection, especially at the time of inference on test images?
For training, I suppose I would just take out the random crops, and use those for training. But for testing, I want to know if there is a specific way of cropping the test image, applying object detection and combining the results back to get the output for the original large image.