I want to implement subgradient and Stochastic descent using a cost function, calculate the number of iterations that it takes to find a perfect classifier for the data and also the weights (w) and bias (b). the dataset is in four dimension
i have take the derivative of the cost function and here it is:
When i run my code i get a lot of errors, can someone please help.
Here is my Code in python
import numpy as np
learn_rate = 1
w = np.zeros((4,1))
b = 0
M = 1000
data = '/Users/labuew/Desktop/dataset.data'
#calculating the gradient
def cal_grad_w(data, w, b):
for i in range (M):
sample = data[i,:]
Ym = sample[-1]
Xm = sample[0:4]
if -Ym[i]*(w*Xm+b) >= 0:
tmp = 1.0
else:
tmp = 0
value = Ym[i]*Xm*tmp
sum = sum +value
return sum
def cal_grad_b(data, w, b):
for i in range (M):
sample = data[i,:]
Ym = sample[-1]
Xm = sample[0:4]
if -Ym*(w*Xm+b) >= 0:
tmp = 1.0
else:
tmp = 0
value = Ym[i]*x*tmp
sum = sum +value
return sum
if __name__ == '__main__':
counter = 0
while 1:
counter +=1
dw = cal_grad_w(data, w, b)
db = cal_grad_b(data, w, b)
if dw == 0 and db == 0:
break
w = w - learn_rate*dw
b = b - learn_rate *dw
print(counter,w,b)