I am training Faster-RCNN for multiclass object detection. I am using matlab inbuilt function trainFasterRCNNObjectDetector along with alexnet. The code works fine for single object but when tried for multiple objects it shows "Warning: Invalid bounding boxes from 2 out of 3 training images were removed. The following rows in trainingData have invalid bounding box data:". Its because some images doesn't contain one class and for that i just put empty brackets.
%trainingData
%|---------------------|------------------|------------------|
%| Filename | Class 1 | Class 2 |
%|---------------------|------------------|------------------|
%| '\00013.jpg' |[1, 141, 374, 158]| [] |
%|---------------------|------------------|------------------|
%
options = trainingOptions('sgdm', ...
'MaxEpochs', 5, ...
'MiniBatchSize', 1, ...
'InitialLearnRate', 1e-3, ...
'CheckpointPath', tempdir);
[detector, info] = trainFasterRCNNObjectDetector(trainingData, 'alexnet', options, ...
'NegativeOverlapRange', [0 0.3], ...
'PositiveOverlapRange', [0.6 1]);