Pyhton faker
is your friend here. It can generate locaclized fake data for names, addresses, phone and credit card numbers and many more.
from faker import Faker
fake = Faker()
n = 1000
df = pd.DataFrame([[fake.name(),
np.random.randint(19,91),
np.random.choice(['M.', 'F.']),
fake.phone_number(),
fake.email()] for _ in range(n)],
columns=['Name', 'Age', 'Gender', 'Phone number', 'Email ID'])
Output of df.head():
Name Age Gender Phone number Email ID
0 Miranda Hinton 21 F. 018.482.1404 meghan91@lopez.biz
1 Donald Donovan 51 F. 572.846.4120x995 jacobcarson@melton.com
2 Shannon Grimes 72 F. 0289879995 phillip93@gmail.com
3 Heather Perez 87 F. 012-033-2318 rodriguezjeffrey@hotmail.com
4 Jacqueline Pearson 22 M. 178-913-4566x89793 brianclark@hotmail.com